Дан треугольник с вершинами А(2:1), B(-2;4), C(-2;-2). а) вычислите периметр этого треугольника; б) найдите длину медианы, проведенной к стороне вс в) докажите, что данный треугольник - прямоугольный.
(*** некоторые результаты, вроде того, что угол CAD= 30°; - я привожу без пояснений и "доказательств", предполагается, что вам известны углы между диагоналями и их размеры в правильном шестиугольнике).
Начало координат в точке А, ось X вдоль AD, ось Y в плоскости основания перпендикулярно AD, ось Z - вдоль АА1. Еще я обозначу R = 2 (по смыслу это радиус описанной вокруг шестиугольника окружности). Кроме того, пусть К - проекция точки N на AD.
Плоскость NA1D пересекает ось Х в точке (4, 0, 0) и ось Z в точке (0, 0, 4).
Кроме этого, она проходит через точку N.
Координаты точки N (Nx, Ny, 0); Ny = NK равно половине высоты трапеции ABCD,
то есть Ny = (R*√3/2)/2 = √3/2; отсюда Nx = АК = 3/2; (потому что угол CAD равен 30°;)
Чтобы построить уравнение плоскости NA1D, лучше всего найти координаты точки Q (0, q, 0), в которой прямая DN пересекает ось Y. Это проще, чем высчитывать определитель, задающий уравнение плоскости через координаты точек A1, D и N.
Треугольники QAD и NKD подобны, поэтому
AQ/AD = NK/KD; q/4 = (√3/2)/(4 - 3/2); q = 4√3/5;
То есть координаты точки Q (0, 4√3/5, 0);
Уравнение плоскости A1QD ( она же - плоскость NA1D) теперь записывается автоматически
x/4 + y/(4√3/5) + z/4 = 1;
(если не понятно, как это получается - легко проверить, что точки (4,0,0) (0,4√3/5,0) и (0,0,4) удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость.)
(Примечание. Все предыдущие манипуляции преследовали только одну цель - найти, какой отрезок плоскость отсекает на оси Y. В общем случае, если известно, что какая-то плоскость отсекает на осях - считая от начала координат, ориентированные отрезки a, b, c - то есть проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости записывается сразу x/a + y/b + z/c = 1).
Это уравненние можно записать в виде скалярного произведения rp=1;
r = (x,y,z); это радиус-вектор точки плоскости (то есть его абсолютная величина равна расстоянию от А до точки плоскости).
p = (1/4, 5/4√3, 1/4);
Теперь задается вопрос "при каком r его длина минимальна?".
В такой постановке сразу ясно, что r коллинеарен (параллелен, пропорционален) p, поскольку при любом другом положении r его длина больше - так как косинус угла между r и p будет меньше 1).
В этом случае rp=1; (абсолютные величины!) и r = 1/p;
То есть для получения ответа осталось вычислить p = IpI;
p = √((1/4)^2 + (1/4)^2 + (5/4√3)^2) = √155/20; а искомое расстояние равно 4√155/31.
проверяйте, может я в числах где ошибся.
Это копия моего решения вот я и тогда не был уверен в числах, и сейчас :)
Поместим пирамиду в систему координат точкой А в начало, АД по оси Ох, АВ по оси Оу.
Имеем координаты её вершин.
А(0; 0; 0), В(0; 10; 0), С(10; 10; 0), Д(10; 0; 0), S(5; 5; 8).
Уравнение плоскости АВСД z = 0.
Находим координаты точек М и К.
М(2,5; 2,5; 4) и К(7,5; 7,5; 4).
Уравнение плоскости, проходящей через 3 точки определяем по формуле:
x - x1 y - y1 z - z1
x2 - x1 y2 - y1 z2 - z1 = 0
x3 - x1 y3 - y1 z3 - z1
x - 0 y - 10 z - 0
(2.5) - 0 (2.5) - 10 4 - 0 = 0
(7.5) - 0 (7.5) - 10 4 - 0
- 0 y - 10 z - 0
2.5 -7.5 4 = 0
7.5 -2.5 4
(x - 0 )( (-7.5) · 4 - 4 · (-2.5) ) - (y - 10 )( (2.5) · 4 - 4 · (7.5) ) + (z - 0 )( (2.5) · (-2.5) - (-7.5) · (7.5) ) = 0
(-20) (x - 0 ) + 20 (y - 10 ) + 50 (z - 0 ) = 0
- 20 x + 20 y + 50 z - 200 = 0 .
Сократим обе части на -10 и получаем уравнение плоскости МВК:
2x - 2y - 5z + 20 = 0.
Угол между плоскостями
z = 0 и 2x - 2y - 5z + 20 = 0 определяем по формуле:
cos α = |A1·A2 + B1·B2 + C1·C2| /√(A1² + B1² + C1² )*√(A2² + B2² + C2²)
cos α = |0·2 + 0·(-2) + 1·(-5)| /√(0² + 0² + 1²)* √(2² + (-2)² + (-5)²) =
= |0 + 0 + (-5)| /(√1 *√33) = 5√33/3 3 ≈ 0,87039
α = 29,496° .
Через arctg ответ можно получить без векторного метода.
Линия пересечения заданных плоскостей лежит в плоскости основания АВСД и параллельна диагонали АС.
Отрезок МК пересекает высоту пирамиды в её середине.
Тангенс угла равен 4/(5√2).
α = arctg (4/(5√2)) = arctg (2√2)/5).
Координатный метод.
(*** некоторые результаты, вроде того, что угол CAD= 30°; - я привожу без пояснений и "доказательств", предполагается, что вам известны углы между диагоналями и их размеры в правильном шестиугольнике).
Начало координат в точке А, ось X вдоль AD, ось Y в плоскости основания перпендикулярно AD, ось Z - вдоль АА1. Еще я обозначу R = 2 (по смыслу это радиус описанной вокруг шестиугольника окружности). Кроме того, пусть К - проекция точки N на AD.
Плоскость NA1D пересекает ось Х в точке (4, 0, 0) и ось Z в точке (0, 0, 4).
Кроме этого, она проходит через точку N.
Координаты точки N (Nx, Ny, 0); Ny = NK равно половине высоты трапеции ABCD,
то есть Ny = (R*√3/2)/2 = √3/2; отсюда Nx = АК = 3/2; (потому что угол CAD равен 30°;)
Чтобы построить уравнение плоскости NA1D, лучше всего найти координаты точки Q (0, q, 0), в которой прямая DN пересекает ось Y. Это проще, чем высчитывать определитель, задающий уравнение плоскости через координаты точек A1, D и N.
Треугольники QAD и NKD подобны, поэтому
AQ/AD = NK/KD; q/4 = (√3/2)/(4 - 3/2); q = 4√3/5;
То есть координаты точки Q (0, 4√3/5, 0);
Уравнение плоскости A1QD ( она же - плоскость NA1D) теперь записывается автоматически
x/4 + y/(4√3/5) + z/4 = 1;
(если не понятно, как это получается - легко проверить, что точки (4,0,0) (0,4√3/5,0) и (0,0,4) удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость.)
(Примечание. Все предыдущие манипуляции преследовали только одну цель - найти, какой отрезок плоскость отсекает на оси Y. В общем случае, если известно, что какая-то плоскость отсекает на осях - считая от начала координат, ориентированные отрезки a, b, c - то есть проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости записывается сразу x/a + y/b + z/c = 1).
Это уравненние можно записать в виде скалярного произведения rp=1;
r = (x,y,z); это радиус-вектор точки плоскости (то есть его абсолютная величина равна расстоянию от А до точки плоскости).
p = (1/4, 5/4√3, 1/4);
Теперь задается вопрос "при каком r его длина минимальна?".
В такой постановке сразу ясно, что r коллинеарен (параллелен, пропорционален) p, поскольку при любом другом положении r его длина больше - так как косинус угла между r и p будет меньше 1).
В этом случае rp=1; (абсолютные величины!) и r = 1/p;
То есть для получения ответа осталось вычислить p = IpI;
p = √((1/4)^2 + (1/4)^2 + (5/4√3)^2) = √155/20; а искомое расстояние равно 4√155/31.
проверяйте, может я в числах где ошибся.
Это копия моего решения вот я и тогда не был уверен в числах, и сейчас :)