У правильной четырёхугольной пирамиды основанием выступает квадрат. Если сторону квадрата обозначить как а, то S=a² ⇒ а=√S.
Боковое ребро пирамиды l, её высота h и полудиагональ основания образуют прямоугольный треугольник, в котором искомое ребро - гипотенуза, а высота и полудиагональ - катеты.
Диагональ квадрата равна √(2а²)=а*√2,
тогда половина диагонали равна а/√2, а так как а=√S,
Пусть есть 2 пересекающиеся прямые, КМ и РТ. Точку их пересечения обозначим О. По трем точкам - КРО или МТО можно построить только одну плоскость. Поскольку точки К и М лежат на одной прямой, а Р и Т тоже на одной прямой, то обе этих прямых целиком принадлежат этой плоскости. Значит, плоскость КРО совпадает с плоскостью МТО, то есть обе прямые лежат в одной плоскости. Значит, все 4 точки лежат в одной плоскости, а это противоречит условию. Вывод: Если 4 точки не лежат в одной плоскости, то прямые, их соединяющие попарно, скрещивающиеся.
Объяснение:
Объём пирамиды:
, где S - площадь основания, h - высота пирамиды.
Значит
У правильной четырёхугольной пирамиды основанием выступает квадрат. Если сторону квадрата обозначить как а, то S=a² ⇒ а=√S.
Боковое ребро пирамиды l, её высота h и полудиагональ основания образуют прямоугольный треугольник, в котором искомое ребро - гипотенуза, а высота и полудиагональ - катеты.
Диагональ квадрата равна √(2а²)=а*√2,
тогда половина диагонали равна а/√2, а так как а=√S,
то половина диагонали равна
Тогда, по теореме Пифагора:
Пусть есть 2 пересекающиеся прямые, КМ и РТ. Точку их пересечения обозначим О. По трем точкам - КРО или МТО можно построить только одну плоскость. Поскольку точки К и М лежат на одной прямой, а Р и Т тоже на одной прямой, то обе этих прямых целиком принадлежат этой плоскости.
Значит, плоскость КРО совпадает с плоскостью МТО, то есть обе прямые лежат в одной плоскости.
Значит, все 4 точки лежат в одной плоскости, а это противоречит условию.
Вывод: Если 4 точки не лежат в одной плоскости, то прямые, их соединяющие попарно, скрещивающиеся.