В прямоугольнике ABCD точка F-середина стороны BC, точка N-середина стороны CD, T-точка пересечения отрезков DF и BN. Докажите, что угол FAN равен углу BTF
Описанная трапеция - это трапеция, в которую вписана окружность. ЕЕ можно вписать в трапецию ТОЛЬКО ТОГДА, когда сумма оснований трапеции равна сумме боковых сторон. Пусть три последовательные стороны трапеции равны 2х, 7х и 12х. Тогда ясно, что две противоположные стороны - это стороны 2х и 12х и их сумма равна 14х. значит четвертая сторона этой трапеции тоже равна 7х, так как 2+12=14 и 7+7=14. Периметр равен 28х и равен 42. Тогда х= 42:28 = 3/2 см. Стороны трапеции равны 2х=3 см; 7х=10,5 см; 12х=18 см и 7х=10,5 см.
ответ: стороны трапеции 3см, 10,5см, 18см и 10,5 см.
От противоположного. Пусть это не так. Проведем через точку M 2 прямые они зададут некую плоскость, параллельную a. Действительно, каждая из этих прямых параллельна a, то есть любой прямой в a. Поэтому мы можем найти пару пересекающихся прямых, параллельных нашим двум, по признаку параллельности плоскостей, наша плоскость параллельна a. По условию она параллельна плоскости a, т. е. ее не пересекает. С другой стороны, она не лежит в нашей плоскости, т. е. пересекает и ее и a. Противоречие.
Описанная трапеция - это трапеция, в которую вписана окружность. ЕЕ можно вписать в трапецию ТОЛЬКО ТОГДА, когда сумма оснований трапеции равна сумме боковых сторон. Пусть три последовательные стороны трапеции равны 2х, 7х и 12х. Тогда ясно, что две противоположные стороны - это стороны 2х и 12х и их сумма равна 14х. значит четвертая сторона этой трапеции тоже равна 7х, так как 2+12=14 и 7+7=14. Периметр равен 28х и равен 42. Тогда х= 42:28 = 3/2 см. Стороны трапеции равны 2х=3 см; 7х=10,5 см; 12х=18 см и 7х=10,5 см.
ответ: стороны трапеции 3см, 10,5см, 18см и 10,5 см.
Проверка: 3+10,5+18+10,5 =42
От противоположного. Пусть это не так. Проведем через точку M 2 прямые они зададут некую плоскость, параллельную a. Действительно, каждая из этих прямых параллельна a, то есть любой прямой в a. Поэтому мы можем найти пару пересекающихся прямых, параллельных нашим двум, по признаку параллельности плоскостей, наша плоскость параллельна a. По условию она параллельна плоскости a, т. е. ее не пересекает. С другой стороны, она не лежит в нашей плоскости, т. е. пересекает и ее и a. Противоречие.
Мы недавно проходили