В прямоугольнике АВСD диагонали пересекаются в точке О, расстояние от которой до сторон прямоугольника равны 14 см и 10 см. Найдите площадь прямоугольника. ответ дайте в квадратных сантиметрах.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Начнем с углов, т.к это прямоугольный треугольник , то сумма острых углов равно 90, и получается пусть один угол будет x , а другой угол будет 2x. отсюда следует, x+2x=90
3x=90
x=30
один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
28 cm
Объяснение:
Начнем с углов, т.к это прямоугольный треугольник , то сумма острых углов равно 90, и получается пусть один угол будет x , а другой угол будет 2x. отсюда следует, x+2x=90
3x=90
x=30
один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
a+b=42, где b=1\2 a
a+1\2a=42
3\2a=42
a=42×2;3=28
ответ 28 см