Объяснение:
Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом.
У прямоугольного параллелепипеда все грани — прямоугольники.
Длина вектора равна длине отрезка ( над векторами нужно ставить стрелки).
|BB₁ |=12 ( противоположные ребра равны) ;
|AD|=11 ;
|CD₁ |=√153 ( из прямоугольного ΔDСD1 пот. Пифагора CD₁²=3²+12²) ;
|BD|=√130 ( из прямоугольного ΔАВD пот. Пифагора CD₁²=3²+11²) ;
| BD₁ |= √146 (Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений: BD₁²=3²+4²+11² , BD₁²=146 )
Объяснение:
Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом.
У прямоугольного параллелепипеда все грани — прямоугольники.
Длина вектора равна длине отрезка ( над векторами нужно ставить стрелки).
|BB₁ |=12 ( противоположные ребра равны) ;
|AD|=11 ;
|CD₁ |=√153 ( из прямоугольного ΔDСD1 пот. Пифагора CD₁²=3²+12²) ;
|BD|=√130 ( из прямоугольного ΔАВD пот. Пифагора CD₁²=3²+11²) ;
| BD₁ |= √146 (Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений: BD₁²=3²+4²+11² , BD₁²=146 )