Пусть О - центр этой окружности, Е - точка ее касания с прямой СD. Пусть, также F - точка пересечения прямых AB и CD, а G - середина AB. 1) ∠AFD=90°, т.к. сумма углов при основании трапеции равна 90°; 2) ∠FEO=90°, т.к. Е - точка касания; 3) ОG⊥AB, т.к. OB и ОA равны как радиусы, а G - середина AB Значит OEFG - прямоугольник, откуда радиус окружности OE=GF. Т.к. треугольник AFD подобен BFC с коэффициентом подобия 36/12=3 и AB=10, то (BF+10)/BF=3, т.е. BF=5. Далее GB=10/2=5. И, значит, OE=GF=GB+BF=5+5=10. Итак, радиус окружности равен 10.
Высота ромба равна 12 см, а одна из его диагоналей - 15 см. Найдите площадь ромба.
Высота ромба перпендикулярна его стороне, ⇒∆ ВНD- прямоугольный.
Примем отрезок АН стороны АD равным а, отрезок HD=x.
По т.Пифагора НD=√(BD²-BH²)=√(225-144)=9 (см)
АB=AD=AH+HD=a+9
Из ∆ АВН по т.Пифагора АВ²=а²+12²
AD²=(a+9)²
Стороны ромба равны. Приравняем значения квадрата стороны:
а²+12²=а²+18а+81, откуда
18а=63 ⇒ а=3,5 (см)
AD=3,5+9=12,5 (см)
Площадь ромба равна произведению высоты на сторону к которой проведена.
S=12•12,5=150 см²
1) ∠AFD=90°, т.к. сумма углов при основании трапеции равна 90°;
2) ∠FEO=90°, т.к. Е - точка касания;
3) ОG⊥AB, т.к. OB и ОA равны как радиусы, а G - середина AB
Значит OEFG - прямоугольник, откуда радиус окружности OE=GF.
Т.к. треугольник AFD подобен BFC с коэффициентом подобия 36/12=3 и AB=10, то (BF+10)/BF=3, т.е. BF=5. Далее GB=10/2=5. И, значит,
OE=GF=GB+BF=5+5=10. Итак, радиус окружности равен 10.