В прямоугольном треугольнике ABC с катетами AC=3 и BC=2 проведена биссектриса CL. А) Найти площадь треугольника BCL.
Б) Добавлена медиана CM. Найти площадь треугольника MCL.
В) Добавлена медиана CM. Найти тангенс угла MCL.
Решение нужно незамедлительно,
Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
х+х+х+4+х+4=24
4х+8=24
4х=16
х=4
AD=4 BC=4 AB=8(x+4=4+4=8) DC=8
т.к. диагонали пересекаются в точке О(так обозначим точку пересечения) в центре прямоугольника, опускаем перпендикуляр на сторону DC(этим мы доказываем, что пересекаются в центре) и получается, что они пересекаются в середине большой стороны прямоугольника, а середина прямоугольника - это 8\2=4см. т.е. расстояние от точки О до сторон АD и ВС равна 4 см.