Так как OC и AO - радиусы окружности с центром в точке O ⇒ AO=OC (точки на окружности равноудалены от центра).
Поскольку AO=OC ⇒ ΔAOC - равнобедренный.
∠CAO=∠ACO=47° (по свойству равнобедренного треугольника).
Сумма углов треугольника равна 180°.
⇒ ∠AOC=180°-(47°+47°)=180°-94°=86°.
Сумма смежных углов равна 180°.
∠AOC смежный с ∠COB ⇒ ∠COB=180°-86°=94°.
Так как CO и OB - радиусы окружности с центром в точке O ⇒ CO=OB (точки на окружности равноудалены от центра).
Поскольку CO=OB ⇒ ΔCOB - равнобедренный.
∠OCB=∠CBO (по свойству равнобедренного треугольника) ⇒ их сумма равна 180°-94°=86°, а каждый из них по 43°.
Также можно было найти ∠OCB и ∠CBO по-другому:
Вписанный угол, который опирается на полуокружность, равен 90°.
∠ACB=90°, так как он вписанный (он же ∠С).
Поскольку ∠ACO=47° ⇒ ∠OCB=90°-47°=43°.
Так как ΔCOB - равнобедренный ⇒ ∠OCB=∠CBO (он же ∠B) =43° (по свойству равнобедренного треугольника).
ответ: 43°; 90°.
Задача с неполным условием, имеет бесконечно много решений в зависимости от формы треугольника. Рассмотрим три возможных варианта.
1) ΔABC - равнобедренный, AC = AB; AM=13 см; AC = 17 см
AM - медиана, в равнобедренном треугольнике одновременно высота ⇒
CM = MB; AM ⊥ CB
ΔAMC - прямоугольный, ∠AMC=90°; AM=13 см; AC = 17 см
Теорема Пифагора :
CM² = AC² - AM² = 17² - 13² = 120 = (2√30)²
CM = 2√30 см
BC = 2 CM = 2*2√30 = 4√30 см
BC = 4√30 см
=========================================
2) ΔABC - прямоугольный; ∠BAC = 90°; AM=13 см; AC = 17 см
AM - медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.
BC = 2 AM = 2*13 = 26 см;
BC = 26 см
====================================
3) ΔABC - прямоугольный, ∠ABC = 90°; AM=13 см; AC = 17 см
AM - медиана ⇒ BM = MC; BC = 2BM
Теорема Пифагора
AB² = AC² - BC² = 17² - (2BM)² = 289 - 4BM²
Теорема Пифагора для ΔABM
AB² = AM² - BM² = 13² - BM² = 169 - BM²
169 - BM² = 280 - 4BM²
3BM² = 111; BM² = 37
BM = √37 см ⇒ BC = 2BM = 2√37 см
BC = 2√37 см
Так как OC и AO - радиусы окружности с центром в точке O ⇒ AO=OC (точки на окружности равноудалены от центра).
Поскольку AO=OC ⇒ ΔAOC - равнобедренный.
∠CAO=∠ACO=47° (по свойству равнобедренного треугольника).
Сумма углов треугольника равна 180°.
⇒ ∠AOC=180°-(47°+47°)=180°-94°=86°.
Сумма смежных углов равна 180°.
∠AOC смежный с ∠COB ⇒ ∠COB=180°-86°=94°.
Так как CO и OB - радиусы окружности с центром в точке O ⇒ CO=OB (точки на окружности равноудалены от центра).
Поскольку CO=OB ⇒ ΔCOB - равнобедренный.
∠OCB=∠CBO (по свойству равнобедренного треугольника) ⇒ их сумма равна 180°-94°=86°, а каждый из них по 43°.
Также можно было найти ∠OCB и ∠CBO по-другому:
Вписанный угол, который опирается на полуокружность, равен 90°.
∠ACB=90°, так как он вписанный (он же ∠С).
Поскольку ∠ACO=47° ⇒ ∠OCB=90°-47°=43°.
Так как ΔCOB - равнобедренный ⇒ ∠OCB=∠CBO (он же ∠B) =43° (по свойству равнобедренного треугольника).
ответ: 43°; 90°.
Задача с неполным условием, имеет бесконечно много решений в зависимости от формы треугольника. Рассмотрим три возможных варианта.
1) ΔABC - равнобедренный, AC = AB; AM=13 см; AC = 17 см
AM - медиана, в равнобедренном треугольнике одновременно высота ⇒
CM = MB; AM ⊥ CB
ΔAMC - прямоугольный, ∠AMC=90°; AM=13 см; AC = 17 см
Теорема Пифагора :
CM² = AC² - AM² = 17² - 13² = 120 = (2√30)²
CM = 2√30 см
BC = 2 CM = 2*2√30 = 4√30 см
BC = 4√30 см
=========================================
2) ΔABC - прямоугольный; ∠BAC = 90°; AM=13 см; AC = 17 см
AM - медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.
BC = 2 AM = 2*13 = 26 см;
BC = 26 см
====================================
3) ΔABC - прямоугольный, ∠ABC = 90°; AM=13 см; AC = 17 см
AM - медиана ⇒ BM = MC; BC = 2BM
Теорема Пифагора
AB² = AC² - BC² = 17² - (2BM)² = 289 - 4BM²
Теорема Пифагора для ΔABM
AB² = AM² - BM² = 13² - BM² = 169 - BM²
169 - BM² = 280 - 4BM²
3BM² = 111; BM² = 37
BM = √37 см ⇒ BC = 2BM = 2√37 см
BC = 2√37 см