1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются - признак скрещивающихся прямых.
Рассмотрим куб ABCDA1B1C1D1. Обозначим за a прямую, содержащую ребро AB, за b прямую, содержащую ребро BC, за c прямую, содержащую ребро A1B1.
Прямая b лежит в плоскости BB1C, а прямая c пересекает плоскость BB1C в точке B1, которая не принадлежит прямой B. Тогда по признаку выше прямые b и с являются скрещивающимися, что и требовалось доказать.
2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
Рассмотрим куб ABCDA1B1C1D1. Обозначим за a прямую, содержащую ребро AB, за b прямую, содержащую ребро BC, за c прямую, содержащую ребро A1B1.
Прямая b лежит в плоскости BB1C, а прямая c пересекает плоскость BB1C в точке B1, которая не принадлежит прямой B. Тогда по признаку выше прямые b и с являются скрещивающимися, что и требовалось доказать.
ответ: да, могут.