Давайте сначала рассмотрим две точки и посмотрим, при каких условиях прямая будет равноудалена от них (первый рисунок). Я утверждаю, что так будет, если или она параллельна отрезку, соединяющему эти точки, или проходит через середину этого отрезка.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок). Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
Объяснение:
Дано: АВСD - ромб, АС=18 см, ВD=26 см. ∠ОАD=60°.
Найти Р(АСВD), Р(АОD), ∠А, ∠В, ∠С, ∠D.
Диагонали ромба в точке пересечения делятся пополам, поэтому АО=ОС=18:2=9 см; ВО=ОD=26:2=13 см.
Найдем сторону ромба АD из ΔАОD-прямоугольного;
∠АDО=90-∠ОАD=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°; значит, АD=2АО=9*2=18 см.
AD=AB=BC=CD=18 cм.
Р(ABCD)=18*4=72 cм.
Р(АОD)=18+9+13=40 см.
Найдем углы ромба
Диагональ делит угол ромба пополам, поэтому ∠D=2∠ADO=30*2=60°
Противоположные углы ромба равны, поэтому ∠В=∠D=60°
Сумма углов ромба, прилежащих к одной стороне, равна 180°, поэтому ∠А=180-60=120°.∠С=∠А=120° как противолежащие углы ромба.