В прямоугольном треугольнике высота, опущенная на гипотенузу, делит гипотенузу на отрезки длиной 9 см и 16 см. Найдите стороны прямоугольного треугольника.
Найдите площадь полной поверхности прямой призмы, в основании которой лежит ромб со стороной a=8 см и острым углом 60°, если большая диагональ призмы наклонена к плоскости ее основания под углом 30°.
Дано : ABCDA₁B₁C₁D₁ прямая призма ( AA₁ ⊥ пл.ABCD )
Решение: S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD). , где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD. . Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
Найдите площадь полной поверхности прямой призмы, в основании которой лежит ромб со стороной a=8 см и острым углом 60°, если большая диагональ призмы наклонена к плоскости ее основания под углом 30°.
Дано : ABCDA₁B₁C₁D₁ прямая призма ( AA₁ ⊥ пл.ABCD )
AB=BC=CD=DA = a = 8 см ( ABCD - ромб)
∠BAD = 60°
∠B₁CA = 30 ° - - - - - - -
Sполн пов - ?
Sполн пов= 2Sосн + Sбок = 2*a*a*sin60° +4a*h || h =AA₁ ||
Sполн пов= a²√3 + 4a*h
Из ΔA₁AC : AA₁ =AC*tg(∠B₁CA) =AC*tg30° = AC/√3 =a√3 /√3 = a
Δ ABD - равносторонний (∠BAD = 60°) ⇒ AO =a√3 /2 ; AC=2AO =a√3
Sполн пов= a²√3 + 4a² =a²(4+√3) =8²(4+√3) см²= 64(4 +√3) см²
ответ: 64(4 +√3) см² || (256+64√3) см² ||
подробности см приложение
НABCD - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?
Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
.
Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
ответ: 384см²; 564см²