Высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой. Длинную диагональ основания можно найти по теореме косинусов. Знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен 180-60=120° Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. a2 = 32 + 52 - 2bc·Cos(120) a²=34-30·(-0,5)=49 a=7 Теперь очередь дошла до высоты параллелограмма. h²=25²-7²=574 h=24 cм
60 см^2.
Объяснение:
1) Диагональ и две смежные стороны прямоугольника образуют прямоугольный треугольник, для сторон которого верна теорема Пифагора.
2) Пусть х см - меньшая сторона прямоугольника, тогда (17-х) см - его большая сторона.
х^2 + (17-х)^2 = 13^2
х^2 + 289 - 34х + х^2 - 169 = 0
2х^2 - 34х + 120 = 0
х^2 - 17х + 60 = 0
D = 289 -240 = 49
x1 = (17-7):2 = 5
x2 = (17+7):2 = 12 - не удовлетворяет условию.
3) Меньшая сторона прямоугольника равна 5 см, тогда большая его сторона равна 17-5=12(см).
S = 5•12 = 60(см^2)