ответ:Решение: В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой, и делит его на 2 равные части, одна из которых - треугольник АВМ. Следовательно АМ равно разности периметра треугольника АВМ и половины периметра треугольника АВС, а именно:
АМ=61,8-100/2=61,8-50=11,8 (см). Ведь, сумма сторон АВ и ВМ треугольника АВМ и есть половина периметра треугольника АВС. Остаётся одна - третья сторона АМ. Вот, её и нашли, как разность, описанную выше.
AC лежит в плоскости основания, ребро СС1 прямоугольного параллелепипеда перпендикулярно плоскости основания. Треугольник ACC1 - прямоугольный с углом 30°. AC=AC1/2 =√3 (катет против угла 30° равен половине гипотенузы) CC1=AC√3 =3 (катет против угла 60° равен другому катету, умноженному на √3)
ответ:Решение: В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой, и делит его на 2 равные части, одна из которых - треугольник АВМ. Следовательно АМ равно разности периметра треугольника АВМ и половины периметра треугольника АВС, а именно:
АМ=61,8-100/2=61,8-50=11,8 (см). Ведь, сумма сторон АВ и ВМ треугольника АВМ и есть половина периметра треугольника АВС. Остаётся одна - третья сторона АМ. Вот, её и нашли, как разность, описанную выше.
ответ: Медиана АМ = 11,8 см оцени Объяснение:
AC=AC1/2 =√3 (катет против угла 30° равен половине гипотенузы)
CC1=AC√3 =3 (катет против угла 60° равен другому катету, умноженному на √3)
Грани прямоугольного параллелепипеда - прямоугольники.
P(ABCD) =2(AB+BC) =2√5 <=> AB+BC=√5
AB^2 +BC^2 =AC^2 <=>
(AB+BC)^2 =AC^2 +2AB*BC <=>
AB*BC =(5-3)/2 =1
Объем прямоугольного параллелепипеда равен призведению трех его измерений:
V=AB*BC*CC1 =3