В прямоугольной трапеции диагонали взаимно перпендикулярны, а отношение длин оснований равно m : n(m>n). Найти величину острого угла трапеции Вопрос зачёта
Для решения данной задачи вспомним свойство равнобедренного треугольника: биссектриса проведенная из вершины угла равнобедренного треугольника к основанию является его высотой и медианой. Таким образом задача сводится к решению двух подзадач. 1. построение биссектрисы угла; 2. построение перпендикуляра к прямой через заданную точку. Решения: 1. раскроем циркуль на удобное расстояние и, поставив ножку на т. А сделаем засечки на лучах угла; не изменяя раствора циркуля, поставив его ножку на сделанные засечки, сделаем еще две до пересечения; полученная т. А1 принадлежит биссектрисе, проводим её. 2. раскроем циркуль на расстояние большее чем расстояние от т. М до биссектрисы и, поставив ножку на т. М сделаем засечки на АА1; не меняя раствор циркуля ставим ножку на засечки и делаем новые засечки с другой стороны АА1; получаем точку М1; прямая ММ1 перпендикулярна АА1 и точки В и С - пересечения с углом А образуют равнобедренный треугольник АВС с основанием ВС которому принадлежит т. М.
1) в равностороннем треугольнике все высоты равны.
Верно.Это свойство высот равностороннего треугольника
2)точка пересечения медиан произвольного треугольника - это центр окружности, описанной около этого треугольника.
Неверно. Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника
4)медиана, это отрезок соеденяющий середины двух сторон треугольника.
Неверно. Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
5) треугольник со сторонами 6,8,9- не существует.
Неверно. Существует.
Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.
Проверим:
6+8>9, 14>9
8+9>6, 17>6
6+9>8, 15>8
6) треугольник со сторонами 3,4,5 -прямоугольный.
Верно. Он египетский.
Египетский треугольник - прямоугольный треугольник с соотношением сторон 3:4:5
ответ 1 и 6
Таким образом задача сводится к решению двух подзадач.
1. построение биссектрисы угла;
2. построение перпендикуляра к прямой через заданную точку.
Решения:
1. раскроем циркуль на удобное расстояние и, поставив ножку на т. А сделаем засечки на лучах угла;
не изменяя раствора циркуля, поставив его ножку на сделанные засечки, сделаем еще две до пересечения;
полученная т. А1 принадлежит биссектрисе, проводим её.
2. раскроем циркуль на расстояние большее чем расстояние от т. М до биссектрисы и, поставив ножку на т. М сделаем засечки на АА1;
не меняя раствор циркуля ставим ножку на засечки и делаем новые засечки с другой стороны АА1;
получаем точку М1;
прямая ММ1 перпендикулярна АА1 и точки В и С - пересечения с углом А образуют равнобедренный треугольник АВС с основанием ВС которому принадлежит т. М.