В прямоугольный равнобедренный треугольник вписан квадрат. а) Найдите гипотенузу треугольника, если диагональ квадрата равна 32,4 см.
б) Найдите катеты треугольника, если сторона квадрата равна 12,4 см.
в) Найдите периметр квадрата, если катет треугольника равен 12 см.
можно с Дано: начать
я не понял и на лист написать чвоткать и отправить.
(Смотри вложение)
S = 0,5 * BC * AH
Т.к. ΔABС - равносторонний ⇒ AH является не только высотой, но и биссектрисой и медианой. Из этого можно сделать вывод, что ∠BAH = ∠CAH = 30° и BH=СН
Рассмотрим ΔABH
ΔABH - прямоугольный, т.к. AH -высота
Пусть х - BH, тогда 2х - ВА (т.к. треугольник ΔABС равносторонний и сторона, лежащая напротив ∠ 30° равна половине гипотенузы), тогда по т. Пифагора:
х² + (12√3)² = (2х)²
х² - 4х² + 432 = 0
-3х² = - 432 | : (-3)
х² = 144
x = 12 ( корень -12 мы не берём, т.к. сторона треугольника не может быть отрицательной)
Получается ВС = 2 * ВН = 2*12 = 24
S = 0,5 * 24 * 12√3 = 12 * 12√3 = 144√3 см²
ответ: S = 144√3 см²
ВО = 12√3 (см) – высота
Рассмотрим Δ АВО – прямоугольный, так как ∠ АОВ = 90°
против.кат. ВО
sin ∠ A = ––––––––––– = ––––
гипот. АВ
ВО 12√3
sin 60° = –––, sin 60° = –––– ⇒
АВ АВ
√3 2
⇒ АВ = 12√3 : sin60° = 12√3 : –– = 12√3 * ––– = 24см
2 √3
ответ: АВ = ВС = АС = 24 см