Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
угол 4 и угол 6 односторонние при а||b и секущей с => 4+6=180 => 6=180-35=145°
угол 2=6 как соответственные при а||b и секущей с (второй вариант доказательства того, что угол 2=6), 6=3 как накрест лежащие при а||b и секущей с угол 3=7 как соответственные или угол 6=7 как вертикальные =>
а) пусть угол 1=35°
на прикреплённом фото все углы обозначены
1=4 как вертикальные, 4=5 как накрест лежащие при а||b и секущей с, 5=8 как вертикальные => 1=4=5=8=35°
угол 1 и угол 2 смежные => 1+2=180° => угол 2=180-1=145°
угол 4 и угол 6 односторонние при а||b и секущей с => 4+6=180 => 6=180-35=145°
угол 2=6 как соответственные при а||b и секущей с (второй вариант доказательства того, что угол 2=6), 6=3 как накрест лежащие при а||b и секущей с угол 3=7 как соответственные или угол 6=7 как вертикальные =>
2=3=6=7=145°
б) угол 2 на 50° больше угла 1
1 и 2 смежные, => 1+2=180, угол 1=х, угол 2=х+50
х+х+50=180
2х=130
х=65°
=> угол 1=65°, угол 2=65+50=115°
из п. а берем что 1=4=5=8=> 4=5=8=65°
2=3=6=7 => 3=6=7=115°