в первой, АБС равнобедренный, значит медиана также биссектриса и высота, тогда угол АКБ равен 90°
FED тоже равнобедренный, значит мд тоже высота и значит угол fmd тоже прямой
тогда смежный с fmd угол( там где FMb) =90°, так как сумма смежных углов 180°.
угол FMb и АКB равны и являются соответственными при прямых BC и Db и секущей AE, а значит прямые параллельны
во второй, m||n, так как односторонние углы при секущей а равны(90°), а прямая n||k, так как равны соответвенные углы при секущей b. раз m||n, n||k, то m||k
в первой, АБС равнобедренный, значит медиана также биссектриса и высота, тогда угол АКБ равен 90°
FED тоже равнобедренный, значит мд тоже высота и значит угол fmd тоже прямой
тогда смежный с fmd угол( там где FMb) =90°, так как сумма смежных углов 180°.
угол FMb и АКB равны и являются соответственными при прямых BC и Db и секущей AE, а значит прямые параллельны
во второй, m||n, так как односторонние углы при секущей а равны(90°), а прямая n||k, так как равны соответвенные углы при секущей b. раз m||n, n||k, то m||k
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.