Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
А(-3; 1) В(1; -2) С(-1; 0)
1) Координаты вектора АВ
АВх = хВ - хА = 1 + 3 = 4
АВу = уВ - уА = -2 - 1 = -3
АВ(4; -3)
Координаты вектора АС
АСх = хС - хА = -1 + 3 = 2
АСу = уС - уА = 0 - 1 = -1
АС(2; -1)
2) Модуль вектора АВ
|AB| = √(АВх² + АВy²) = √(4² + (-3)²) = 5
Модуль вектора АC
|AC| = √(АCх² + АCy²) = √(2² + (-1)²) = √5
3) Cкалярное произведение векторов АВ и АС
АВ · АС = АВх · АСх + АВу · АСу = 4 · 2 + (-3 · (-1)) = 11
4) Косину угла между векторами АВ и АС
cos α = AB · AC : (|AB| · |AC|) = 11 : (5√5)= (11√5) /25