В равнобедренном треугольнике ABC с основанием АC проведена медиана BD. Найдите градусные меры углов BDC и BCA, если внешний угол KAB равен и с полным решением
Возможно, я не правильно поняла Ваши скобки, но у меня получилось такое решение:
Возьмём правильный четырёхугольник, который вписан в данную окружность. Этот четырёхугольник - квадрат, пусть его сторона равна х. Диагональ этого квадрата равна диаметру окружности равна 2R. Тогда получаем через теорему Пифагора следующее утверждение:
Сторона правильного четырёхугольника стягивает дугу в 360\4=90 градусов, тогда сторона восьмиугольника будет стягивать дугу в 360\8=45 градусов, а двенадцатиугольника - 30 градусов. Пусть сторона восьмиугольника равна а, сторона двенадцатиугольника равна б, составим отношение:
Возможно, это то, что вам нужно, потому что цифры те же, может быть, вы сможете получить требуемое выражение из этого путём преобразований, но дальше, извините я Вам не в силах, потому что, как уже писала, скобки ваши не поняла.
2. АВ=ВС уголА=уголС, 1 вариант - sinА=√3/2, что соответствует углу 60=уголС, тогда уголВ=180-60-660=60, треугольник АВС равносторонний, АВ=ВС=АС=15 , 2 вариант - проводим высоту ВН на АС=медиане АН=СН, cos²A=1-sin²A=1-3/4=1/4, cosA=1/2, AH=AB*cosA=15*1/2=7.5, AC=2*AH=2*7,5=15
Возьмём правильный четырёхугольник, который вписан в данную окружность. Этот четырёхугольник - квадрат, пусть его сторона равна х. Диагональ этого квадрата равна диаметру окружности равна 2R. Тогда получаем через теорему Пифагора следующее утверждение:
Сторона правильного четырёхугольника стягивает дугу в 360\4=90 градусов, тогда сторона восьмиугольника будет стягивать дугу в 360\8=45 градусов, а двенадцатиугольника - 30 градусов. Пусть сторона восьмиугольника равна а, сторона двенадцатиугольника равна б, составим отношение:
Возможно, это то, что вам нужно, потому что цифры те же, может быть, вы сможете получить требуемое выражение из этого путём преобразований, но дальше, извините я Вам не в силах, потому что, как уже писала, скобки ваши не поняла.
1. cos²A=1-sin²A=1-0.64=0,36, cosA=0,6, AB=AC/cosA=6/0,6=10
2. АВ=ВС уголА=уголС, 1 вариант - sinА=√3/2, что соответствует углу 60=уголС, тогда уголВ=180-60-660=60, треугольник АВС равносторонний, АВ=ВС=АС=15 , 2 вариант - проводим высоту ВН на АС=медиане АН=СН, cos²A=1-sin²A=1-3/4=1/4, cosA=1/2, AH=AB*cosA=15*1/2=7.5, AC=2*AH=2*7,5=15
3. треугольник АВС равнобедренный, АС=ВС, cosA=1/корень(1+tg²A)=1/корень(1+16/9)=3/5, проводим высоту СН=медиане, АН=ВН, АН=АС*cosA=15*3/5=9, АВ=2*АН=2*9=18
4. треугольник АВС равнобедренный, АС=ВС=10, проводим высоту СН на АВ, АН=ВН=1/2АВ=8√6/2=4√6, cosA=AH/АС=4√6/10=2√6/5, sin²A=1-cos²A=1-24/25=1/25, sinA=1/5