В равнобедренном треугольнике ABC с основанием BC проведена медиана AM. Из точки M на сторону AC опущен перпендикуляр MH (H ∈ AC). Известно, что AM:MC=2:1 и площадь треугольника MHC равна 6. Найдите площадь треугольника ABC.
Пусть сторона квадрата до увеличения - х, тогда после увеличения на 20% - 1,2х. Пусть площадь квадрата до увеличения - S, тогда после увеличения - S+11. Можно составить систему уравнений: х²=S (1,2x)²=S+11
х²=S 1,44x²=S+11
Вычтем из второго уравнения первое: 1,44x²-х²=S+11-S 0,44x²=11 x²=11/0,44=25 x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной х2=5 (дм) Итак, сторона квадрата до увеличения равна 5 дм. Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
1)S треугольника=1/2*(Сторона треугольника на h, проведённую к ней).Найдём h, она в 3 раза больше стороны, к которой проведена, т.е. высота треугольника равна 12 см, а S=1/2*(4*12)=24см^2; 2)По теореме Пифагора найдём гипотенузу: гипотенуза=√8^2+15^2=√289=17 см. А S прямоугольного треугольника равна половине произведения его катетов, т.е. S треугольника=1/2*(8*15)=60 см^2; 3)За счёт свойства ромба(диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам) получаем прямоугольный треугольник с катетами 6 и 8, в котором надо найти гипотенузу, которая является стороной ромба:гипотенуза=√6^2+8^2=√100=10 см. Теперь найдём S и P данного ромба S ромба равна половине произведения его диагоналей, т.е. S=1/2*(12*16)=96 см^2 А P ромба можно найти просто умножив значение стороны ромба на 4, т.к. стороны ромба равны, т.е. P ромба = 4*10=40 см.
Можно составить систему уравнений:
х²=S
(1,2x)²=S+11
х²=S
1,44x²=S+11
Вычтем из второго уравнения первое:
1,44x²-х²=S+11-S
0,44x²=11
x²=11/0,44=25
x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной
х2=5 (дм)
Итак, сторона квадрата до увеличения равна 5 дм.
Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
2)По теореме Пифагора найдём гипотенузу: гипотенуза=√8^2+15^2=√289=17 см. А S прямоугольного треугольника равна половине произведения его катетов, т.е. S треугольника=1/2*(8*15)=60 см^2;
3)За счёт свойства ромба(диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам) получаем прямоугольный треугольник с катетами 6 и 8, в котором надо найти гипотенузу, которая является стороной ромба:гипотенуза=√6^2+8^2=√100=10 см. Теперь найдём S и P данного ромба
S ромба равна половине произведения его диагоналей, т.е. S=1/2*(12*16)=96 см^2
А P ромба можно найти просто умножив значение стороны ромба на 4, т.к. стороны ромба равны, т.е. P ромба = 4*10=40 см.