В равнобедренном треугольнике ABC сторона AC продолжена за вершину C и на продолжении отложен отрезок CD.
Точка D соеденина с вершиной B треугольника.
A) выполните чертеж по условию задачи
B) периметр треугольника BCD на 15 см меньше периметра треугольника ABC. Найдите периметр треугольника ABC
AB=CD - по свойству параллелограмма ABCD
AB=2*DE=CD ⇒ точка Е - середина CD
CE=ED=AD=DM=MG ⇒ CD=DG
четыр-ник ECFG - параллелограмм
CE || FG, так как ED || FG - по свойству параллелограмма EDGFCE=FG, так как ED=FG - по свойству параллелограмма EDGFЗначит, СF=EG - по свойству параллелограмма ECFG
ΔCDG - равнобедренный ⇒ CM=GE - медианы, проведенные к боковым сторонам равнобедренного треугольника
Поэтому CF=CM
Продолжим прямую СM до пересечения с прямой FG в точке P
ΔCMD=ΔPMG - по стороне и двум прилежащим к ней углам
DM=MG - по условию∠CMD=∠PMG - как вертикальные углы∠CDG=∠PGD - как накрест лежащие углы при CD || PG и секущей DGЗначит, CM=MP, CD=PG
Рассмотрим ΔСPF: CF=CM=MP, PG=2*FG
FG/PG=1/2 и CF/CP=1/2
Известное свойство биссектрисы:
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам
Это свойство работает и в обратную сторону.
Следовательно, CG - биссектриса угла MCF, ч.т.д.
Решение:
В прямоугольном треугольнике медиана,проведенная к гипотенузе, равна половине гипотенузы. Поэтому HO = BC/2 = 12/2 = 6, а OK = AD/2 = 20/2 = 10. Высота трапеции равна HO + OK = 16.
Площадь трапеции:
(12+20)/2 * 16 = 256
2. Боковые стороны прямоугольной трапеции = 17 и 8 см, а основания относятся как 2:5. Найти площадь.
Решение:
Найдем HD по т. Пифагора:
HD² = CD²-CH² = 17² - 8² = 289 - 64 = 225
HD = 15
Справедливо:
2*(BC +15) = 5BC
3BC = 30
BC = 10.
Тогда AD = AH + HD = BC + HD = 10 + 15 = 25.
Площадь трапеции:
S = (BC+AD)/2 * CH = (10 + 25)/2 * 8 = 35 * 4 = 140