Если при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.
Свойство - если мы уверены в справедливости суждения, мы формулируем свойство объекта.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Аксиома, в свою очередь, такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливость которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых.
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.
Другие свойства параллельных прямых.
1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.
2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Эти свойства в отличии от аксиомы нужно доказать.
Докажем 1. Свойство.
Даны две параллельные прямые a и b. Верно лиЕсли при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.
Свойство - если мы уверены в справедливости суждения, мы формулируем свойство объекта.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Аксиома, в свою очередь, такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливость которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых.
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.
Другие свойства параллельных прямых.
1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.
2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Эти свойства в отличии от аксиомы нужно доказать.
Докажем 1. Свойство.
Даны две параллельные прямые a и b. Верно ли, если прямая c параллельна прямой a, то она параллельна и прямой b?
если прямая c параллельна прямой a, то она параллельна и прямой b?
Объяснение:
EC = GC = 5 см, BE = BF = 7.5 см. Пусть AF = AG = x, тогда
AB = AF + BF = x + 7.5 см
AC = AG + GC = x + 5 см
BC = BE + CE = 7.5 + 5 = 12.5 см
По т. Пифагора:
(x+7.5)² + (x+5)² = 12.5²
(x+7.5)² - 12.5² + (x+5)² = 0
(x+7.5+12.5)(x+7.5-12.5) + (x+5)² = 0
(x+20)(x-5) + (x+5)² = 0
x² - 5x + 20x - 100 + x² + 10x + 25 = 0
2x² + 25x - 75 = 0
D = 625 + 600 = 1225
x₁ = (-25 + 35)/4 = 2.5 см
x₂ = (-25-35)/4 < 0 - не подходит.
Имеем: AB = 2.5 + 7.5 = 10 см, AC = 2.5 + 5 = 7.5 см.
P = 12.5 + 10 + 7.5 = 30 см
S = AB*AC/2 = 10*7.5/2 = 37.5 см²
Если при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.
Свойство - если мы уверены в справедливости суждения, мы формулируем свойство объекта.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Аксиома, в свою очередь, такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливость которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых.
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.
Другие свойства параллельных прямых.
1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.
2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Эти свойства в отличии от аксиомы нужно доказать.
Докажем 1. Свойство.
Даны две параллельные прямые a и b. Верно лиЕсли при пересечении двух прямых третьей секущей накрест лежащие углы равны, то эти две прямые параллельны.
Свойство - если мы уверены в справедливости суждения, мы формулируем свойство объекта.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Аксиома, в свою очередь, такая истина, которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливость которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых.
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Иногда эту аксиому называют как одно из свойств параллельных прямых, но на справедливости этой аксиомы строятся многие доказательства в геометрии.
Другие свойства параллельных прямых.
1. Если одна из пары параллельных прямых параллельна третьей прямой, то и другая прямая параллельна третьей прямой.
2. Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Эти свойства в отличии от аксиомы нужно доказать.
Докажем 1. Свойство.
Даны две параллельные прямые a и b. Верно ли, если прямая c параллельна прямой a, то она параллельна и прямой b?
если прямая c параллельна прямой a, то она параллельна и прямой b?