Проведём отрезок СЕ параллельно диагонали ВD => AC перпендикулярен СЕ
Проведём отрезок СК параллельно отрезку МN
Из этого следует, что четырёхугольник ВСЕD - параллелограмм ( СЕ || ВD , BC || DE ). Aналогично, четырёхугольник МСКN - параллелограмм ( CK || MN, МС || KN )
Поэтому, BC = DE , MC = NK, BD = CE = 13
AE = AD + DE = AD + BC
AK = AN + NK = 1/2 × AD + 1/2 × BC = 1/2 × ( ВС + AD )
Значит, K - середина отрезка АЕ , АК = КЕ
Поэтому, МN = CK - медиана в ∆ АСЕ
2) Рассмотрим ∆ АСЕ ( угол АСЕ = 90° ):
" В прямоугольном треугольнике медиана равна половине гипотенузы "
По теореме Пифагора:
AE² = 13² + 5² = 169 + 25 = 194
AE = √194
Значит, искомый отрезок MN, равный отрезку СК, имеет длину:
Проведём отрезок СЕ параллельно диагонали ВD => AC перпендикулярен СЕ
Проведём отрезок СК параллельно отрезку МN
Из этого следует, что четырёхугольник ВСЕD - параллелограмм ( СЕ || ВD , BC || DE ).
Aналогично, четырёхугольник МСКN - параллелограмм ( CK || MN, МС || KN )
Поэтому, BC = DE , MC = NK, BD = CE = 13
AE = AD + DE = AD + BC
AK = AN + NK = 1/2 × AD + 1/2 × BC = 1/2 × ( ВС + AD )
Значит, K - середина отрезка АЕ , АК = КЕ
Поэтому, МN = CK - медиана в ∆ АСЕ
2) Рассмотрим ∆ АСЕ ( угол АСЕ = 90° ):
" В прямоугольном треугольнике медиана равна половине гипотенузы "
По теореме Пифагора:
AE² = 13² + 5² = 169 + 25 = 194
AE = √194
Значит, искомый отрезок MN, равный отрезку СК, имеет длину:
СК = MN = 1/2 × AE = 1/2 × √194 = √194 / 2
ОТВЕТ: √194/2
Ортотреугольник - это треугольник, вписанный в исходный, вершинами которого являются основания высот исходного.
--- 1 ---
Площадь исходного треугольника через основание и высоту к нему
S = 1/2*АС*ВД = 1/2*2*ВД = ВД
ВД по т. Пифагора из ΔАВД
ВД² = АВ² - АД² = 3² - 1² = 9 - 1 = 8
ВД = √8 = 2√2
S = 2√2
--- 2 ---
Площадь через высоту к боковой стороне
S = 1/2*АВ*ЕС = 1/2*3*ЕС = 2√2
ЕС = 4√2/3
--- 3 ---
в прямоугольном ΔАЕС
Д - середина гипотенузы, значит
АД = ДС = ЕД = 1 (радиус описанной окружности)
--- 4 ---
в ΔАЕС катет АЕ по т. Пифагора
АЕ² = АС² - ЕС² = 2² - (4√2/3)² = 4 - 16*2/9 = 4 - 32/9 = 36/9 - 32/9 = 4/9
АЕ = 2/3
--- 5 ---
ΔАЕШ ~ ΔАЕС, поскольку угол А общий, второй угол прямой, из подобия
АШ/АЕ = АЕ/АС
АШ = АЕ²/АС = 4/9/2 = 2/9
--- 6 ---
ЕФ = АС - АШ - ЩС = АС - 2*АШ = 2 - 2*2/9 = 2 - 4/9 = 18/9 - 4/9 = 14/9
--- 7 ---
Периметр отртотреугольника
P = ЕД + ДФ + ЕФ = 1 + 1 + 14/9 = 18/9 + 14/9 = 32/9