сторона= 52\4=13 см Площадь ромба равна произведению квадрата стороны на синус угла между сторонами отсюда синус угла =площадь робма разделить на квадрат стороны sin A=120\(13^2)=120\169 Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)= =119\169 По одной из основных формул тригонометрии tg A=sin A\cos A=120\169\(119\169)=120\119 ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см 3)
Боковые стороны: (36-10)/2=13 Высота h=корень(169-25)=12 tga=5/12 sina=5/13 cosa=12/13. 4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
1)Периметр ромба равен 4*сторона
сторона= 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла =площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)=
=119\169
По одной из основных формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см
3)
Боковые стороны: (36-10)/2=13
Высота h=корень(169-25)=12
tga=5/12 sina=5/13 cosa=12/13.
4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
Треугольник АВС равносторонний, так как АВ = АС как отрезки касательных к окружности проведённых из одной точки. ∠ВАС = 60, значит ∠АВС = ∠АСВ = (180 - 60) : 2 = 60 Рассмотрим четырёхугольник АСОВ. Сумма углов четырёхугольника равна 360 . ∠АСО = ∠АВО = 90 как углы образованные радиусом окружности и касательной к окружности, Значит ∠ ВОС = 360 - 90 - 90 - 60 = 120. По теореме косинусов найдем ВС² = ВО² + ОС² - 2 * ВО * ВО* cos 120
ВС² = 400 + 400 + 2 * 400 * 0,5 = 800 + 400 = 1200
ВС = 20√3
Р = 20√3 * 3 =60√3мм²
(бро , если не сложно мне с решением моего)