В равнобедренном треугольнике с углом при вершине 120° и длиной стороны 8 см есть окружность. Рассчитайте радиус круга и расстояние от центра круга до сторон!
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
х=30 В=120 С=30 и стороны равны так как лежат напротив равных углов
2. С
В А Д
угол САВ=180-угол САД (120)=60
угол ВСА=90-60=30град сторона АВ лежит напротив угла 30 град и равна половине гипотенузы АС=2*5=10
3. получаешь равные прямоугольные треугольники: гипотенцузы равны половине основания тр-ка и прилежащие к ней острые углы равны. Один угол угол при основании равнобедренного тр-ка, а втор0й 90-угол1
1 угол А-х, В-4х, С 4х-90
х+4х+4х-90=180
9х=270
х=30 В=120 С=30 и стороны равны так как лежат напротив равных углов
2. С
В А Д
угол САВ=180-угол САД (120)=60
угол ВСА=90-60=30град сторона АВ лежит напротив угла 30 град и равна половине гипотенузы АС=2*5=10
3. получаешь равные прямоугольные треугольники: гипотенцузы равны половине основания тр-ка и прилежащие к ней острые углы равны. Один угол угол при основании равнобедренного тр-ка, а втор0й 90-угол1