В равнобедренной трапеции угол при основании равен 45 градусов , основания равны 15 и 25 см. Найдите площадь трапеции Если не трудно можно с рисунком:)
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
S прямоугольника = а х в.
S прямоугольника = 190м х 130м = 24700м2.
Найдем сторону квадрата через периметр прямоугольника.
Р прямоугольника = а х 2 + в х 2 (х2, т.к. в прямоугольнике противоположные стороны равны).
Р прямоугольника = 190 х 2 + 130 х 2 = 640м
Теперь найдём сторону квадрата. Мы знаем из условия, что заборы участков одинаковы, значит периметры фигур равны.
640:4(т.к. в квадрате все стороны равны) = 160м - сторона квадрата.
Теперь можно найти S квадрата.
S квадрата = а2
S квадрата = 160 х 160 = 25600м2
Площадь квадрата больше площади прямоугольника на 900м2
[Удачи!]
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см