В равнобедренный треугольник АВС с основанием АС, равным 60 см, вписана окружность. Расстояние от вершины А до центра окружности равно 34 см. Найдите радиус вписанной окружности.
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
1. Сторона треугольника a= 2Rcos30o.
2. 1) Знайдемо радіус вписаного кола у правильний трикутник:
2) Діагональ вписаного у коло квадрата рівна діаметру цього кола і дорівнює подвоєному радіусу:
3) Сторону квадрату знайдемо за т. Піфагора:
3.
4.В трапецию можно вписать окружность, если сумма противоположных сторон равна. то есть AD+BC=AB+CD
Опустим с вершины B трапеции на основание BK высоту BK, тогда
AK=AD-KD=28-21=7
Пусть высота трапеции BK=x, тогда
(AB)^2=(BK)^2+(AK)^2=x^2+7^2
AB=sqrt(x^2+7^2)
Так как
AD+BC=AB+CD, то
21+28=x+sqrt(x^2+7^2)
sqrt(x^2+7^2)=49-x
x^2+7^2=(49-x)^2
x^2+49=2401-98x+x^2
98x=2352
x=24, то есть высота трапеции равна 24
R=H/2
R=24/2=12 - радиус вписанной окружности