Поскольку касательные перпендикулярны радиусу в точке касания, то треугольники ОАС и OBD прямоугольные. Рассмотрим их. Здесь: - АО=ВО как радиусы окружности; - <COA=<DOB как вертикальные углы. Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Значит, в равных треугольниках ОАС и OBD равны и их гипотенузы. ОС=OD.
Рассмотрим треугольники АОС и BOD. Они равны по двум сторонам и углу между ними (первый признак равенства треугольников): - АО=ВО=СО=DO как радиусы окружности; - <AOC=<BOD как вертикальные углы. В равных равнобедренных треугольниках АОС и BOD равны углы ОАС, ОСА, ODB, OBD при основаниях АС и BD. Рассмотрим, например, равные углы ОСА и ODB. Это накрест лежащие углы при пересечении двух прямых АС и BD секущей CD. Используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Значит АС II BD.
- АО=ВО как радиусы окружности;
- <COA=<DOB как вертикальные углы.
Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Значит, в равных треугольниках ОАС и OBD равны и их гипотенузы. ОС=OD.
- АО=ВО=СО=DO как радиусы окружности;
- <AOC=<BOD как вертикальные углы.
В равных равнобедренных треугольниках АОС и BOD равны углы ОАС, ОСА, ODB, OBD при основаниях АС и BD. Рассмотрим, например, равные углы ОСА и ODB. Это накрест лежащие углы при пересечении двух прямых АС и BD секущей CD. Используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Значит АС II BD.