В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Artem58268343
Artem58268343
04.09.2022 16:22 •  Геометрия

в ромбе MNKP диагональ образует со стороной NZ угол равный 86. Найдите угол M

Показать ответ
Ответ:
pipidon17
pipidon17
14.10.2022 05:51

AB - большее основание трапеции (параллельные основания не могут быть равны, так как получим параллелограмм и боковые стороны также будут равны).

O - середина AB. AOСD - параллелограмм (OA=CD, OA||CD) => OC=DA. Аналогично OD=BC. Трапеция составлена из трех равносторонних треугольников.

△KCL=△LDM (по двум сторонам и углу между ними; соответствующие стороны составляют равные доли от равных длин, углы равны 60°*2=120°) => KL=LM.

Достроим трапецию до правильного шестиугольника. На сторонах шестиугольника возьмем точки аналогично K. Получим вершины правильного шестиугольника (его стороны равны аналогично KL=LM).

Вершины правильного шестиугольника делят описанную окружности на шесть равных дуг, ∪KL=360°/6=60°.

Вписанный угол равен половине дуги, на которую опирается, ∠LMK=∪KL/2=30°.


Tрапеция abcd такова,что ab = 2bc = 2cd = 2da.точки k, l и m на bc, cd и da соответственно таковы, ч
0,0(0 оценок)
Ответ:
ppoppo
ppoppo
18.05.2021 22:17

Хитрый треугольник со стороной 5 — ни что иное, как египетский треугольник со сторонами 3, 4, 5.

Т₁, Т₂, Т₃ — точки касания шаров исходной плоскости

U₁, U₂, U₃ – точки касания шаров второй плоскости

O₁, O₂, O₃ – центры шаров

Пусть расстояние 3 между точками касания шаров r₁ и r₂, расстояние 4 — между шарами r₁ r₃, расстояние 5 — между шарами r₂ r₃

Рисунок 1 - вид сверху на плоскость с точками касания шаров. Красными окружностями показаны вычисленные радиусы шаров

----------------------------------------

Рассмотрим прямоугольную трапецию T₁T₂O₂O₁ (рисунок 2), образованную точками касания двух шаров и их центрами. Основания этой трапеции — радиусы шаров, наклонная боковая сторона — сумма радиусов,

O₁O₂ = r₁ + r₂

боковая сторона с прямыми углами — это сторона исходного треугольника.

T₁T₂ = 3

Проекция наклонной боковой стороны на основание равна разнице радиусов шаров r₂ - r₁

По т. Пифагора для прямоугольных треугольников в каждой из трёх таких трапеций

(r₂ – r₁)² +3² = (r₂ + r₁)²

(r₃ – r₁)² +4² = (r₃ + r₁)²

(r₃ – r₂)² +5² = (r₃ + r₂)²

r₁² - 2*r₁*r₂ + r₂² + 9 = r₁² + 2*r₁*r₂ + r₂²

r₁² - 2*r₁*r₃ + r₃² + 16 = r₁² + 2*r₁*r₃ + r₃²

r₂² - 2*r₂*r₃ + r₃² + 25 = r₂² + 2*r₂*r₃ + r₃²

4*r₁*r₂ = 9

4*r₁*r₃ = 16

4*r₂*r₃ = 25

из второго

r₁ = 4/r₃

подставим в первое и третье

4*4/r₃*r₂ = 9

4*r₂*r₃ = 25

Перемножим

4*4*4*r₂² = 9*25

8*r₂ = 3*5

r₂ = 15/8

подставим в первое

4*r₁*15/8 = 9

r₁ = 6/5

и подставим в третье

4*15/8*r₃ = 25

r₃ = 10/3

Радиусы шаров определены.

Между пересекающимися плоскостями шары располагаются так, что меньший шар r1 ближе всего к линии пересечения, средний шар r2 дальше, и наибольший ещё дальше r3

Для трапеции из пункта T₁T₂O₂O₁ продолжим наклонную боковую сторону O₂O₁ до линии пересечения плоскостей. (рисунок 3)

x = Т₁K – расстояние от точки касания меньшего шара до линии пересечения плоскостей по прямой,

Из подобия ΔT₁O₁K и ΔT₂O₂K

x/r₁ = (x+3)/r₂

x*r₂ = (x+3)*r₁

x*15/8 = x*6/5 + 18/5

x*(75 – 48)/40 = 18/5

27x = 18*8

3x = 16

x = 16/3

KT₁ = 16/3

Аналогично для шаров r₁ r₃ рассмотрим трапецию Т₁T₂O₂O₁ и ΔT₁O₁L, ΔT₂O₂L (рисунок 4)

x/r₁ = (x+4)/r₃

x*r₃ = (x+4)*r₁

x*10/3 = x*6/5 + 24/5

x*(50 – 18)/15 = 24/5

32/15*x = 24/5

4/3*x = 3

x = 9/4

LT₁ = 9/4

----------------------------------------------

Найдём высоту треугольника KLT₁

Гипотенуза по т. Пифагора

KL² = KT₁² + LT₁² = (9/4)² + (16/3)² = 4825/144 = 25/144 * 193

KL = 5/12*√193

Площадь через катеты равна площади через гипотенузу и высоту к ней

9/4*16/3 = MT₁*5/12*√193

3*4 = MT₁*5/12*√193

MT₁ = 144/5/√193

----------------------------------------

Теперь перейдём в секущую плоскость O₁T₁M (рисунок 5)

∠O₁MT₁ = arctg(6/5/144*5√193) = arctg(√193/24)

Угол между плоскостями

∠O₁MU₁ = 2*arctg(√193/24)

Расстояние между точками касания плоскостей малым шаром

O₁M по т. Пифагора

O₁M² = 36/25 + 144²/(25 *193) = 27684/4825

O₁M = √(27684/4825) = 6/5*√(769/193)

Высота треугольника O₁MT₁ через площадь, площадь через катеты и площадь через гипотенузу и высоту к ней.

6/5 * 144/(5√193) = h*6/5*√(769/193)

144/5 = h√769

h = 144/(5√769)

Расстояние между точками касания плоскостей малым шаром

T₁U₁ = 2h = 288/(5√769)


Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота