В сосуд цилиндрической формы налили воду до уровня 11 см. Какого уровня достигнет вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания в 3 раза меньше, чем у первого? ответ дайте в см.
Сначала скачай 2 картинки, которые я прикрепил, чтобы по ним было понятно.
Доказательство: Пусть медианы MB и РА треугольника MNP пересекаются в точке О.
Найдем середины С и D отрезков ОР и ОМ и рассмотрим четырехугольник ABCD. Его стороны АВ и DC параллельны и равны как средние линии треугольников MNP и МОР с общей стороной MP. Поэтому четырехугольник ABCD — параллелограмм.
Поскольку диагонали параллелограмма точкой пересечения делятся пополам, то OD = ОВ. Учитывая, что D — середина отрезка ОМ, получаем MD = OD = ОВ. Значит, МО:ОВ = 2:1. Также РО:ОА = 2:1.
Остается доказать, что третья медиана NE проходит через точку О. Пусть медианы NE и MB пересекаются в точке О1. Тогда по доказанному М01: О1В = 2:1. Учитывая, что и МО:ОВ=2:1, заключаем, что точки 01 и О делят отрезок MB в одном и том же отношении. А это значит, что точка 01 совпадает с точкой О. Значит, медиана NE проходит через точку О пересечения медиан MB и РА.
дано: А
АВ+ВС+АС=18
АВ-АС=3.
найти: АВ+АС
решение: т.к АВ=ВС, то 2АВ+АС=18 (1)
из АВ-АС=3 следует, что АВ=3+АС (2). Подставляем (2) в (1) получаем :
2*(3+АС)+АС=18
6+2АС+АС=18
3АС=12
АС=4 дм
подставляем значение АС в (1) 2АВ+4=18
2АВ=14
АВ=7 дм
АВ+АС=4+7=11 дм.
Доказательство: Пусть медианы MB и РА треугольника MNP пересекаются в точке О.
Найдем середины С и D отрезков ОР и ОМ и рассмотрим четырехугольник ABCD. Его стороны АВ и DC параллельны и равны как средние линии треугольников MNP и МОР с общей стороной MP. Поэтому четырехугольник ABCD — параллелограмм.
Поскольку диагонали параллелограмма точкой пересечения делятся пополам, то OD = ОВ. Учитывая, что D — середина отрезка ОМ, получаем MD = OD = ОВ. Значит, МО:ОВ = 2:1. Также РО:ОА = 2:1.
Остается доказать, что третья медиана NE проходит через точку О. Пусть медианы NE и MB пересекаются в точке О1. Тогда по доказанному М01: О1В = 2:1. Учитывая, что и МО:ОВ=2:1, заключаем, что точки 01 и О делят отрезок MB в одном и том же отношении.
А это значит, что точка 01 совпадает с точкой О.
Значит, медиана NE проходит через точку О пересечения медиан MB и РА.