В трапеции PQRS с основаниями PS и QR точка M — точка пересечения диагоналей трапеции, причём QM : MS = 13 : 19. Чему равно отношение площадей треугольников PQS и PQR? ответ: Отношение площадей треугольников равно
Если центр окружности соединить с вершинами данного треугольника, то он (данный треугольник) поделится на 3 новых треугольника. Теперь площадь исходного треугольника можно представить в виде суммы площадей 3х новых треугольников S= s1+ s2+ s3; Пусть стороны исходного треугольника равны x y и t, тогда x+ y+ t= 16; s1= x/2* h; s2= y/2* h; s3= t/2* h; у всех трёх треугольников h является радиусом (по свойству касательной к окружности). Если по условию x+ y+ t= 16, то x/2+ y/2+ t/2= 16/2= 8; S= s1+ s2+ s3= x/2* h+ y/2* h+ t/2*h= h(x/2+ y/2+ t/2)= 2*8= 16
Діагоналі ромба перпендикулярні і точкою перетину діляться навпіл.
Виходячи з цього св-ва знайдемо їх полусумму, яка так само є сумою катетів будь-якого з п / у трикутників, утворених Цими діагоналями:
d1 + d2 = 61
(D1 + d2) / 2 = 31
d1 = x; d2 = (31-x)
Складемо рівняння на основі теореми Піфагора:
625 = x ^ 2 + (31-x) ^ 2
2x ^ 2-62x + 336 = 0
x ^ 2-31x + 168 = 0
D = 289;
x1 = 7
x2 = 24
Ну так як 31-7 = 24, то катети будуть 24см і 7см
Діагоналі будуть в 2 рази довше, тобто 48см і 14см
S = 48 * 14 * 1/2 = 336 (см2)
Объяснение: