В треугольник со сторонами 6, 7 и 12см вписана окружность. К окружности проведена касательная, пересекающая 2 большие стороны треугольника. Чему равен периметр отмеченного треугольника?
Из условия следует,что углы при основании по 30. Отрезок не может соединять три точки,лежащих в разных плоскостях просто по его определению(в условии неточность). Отрезок,соединяющий середину боковой стороны(любой) и основания(они равны как средние линии треугольников с основаниями - боковыми сторонами). Средняя линия данный отрезок по обратной Теореме Фалеса(отношение на боковых сторонах сторон). Получаются два прямоугольных треугольника с углами по 30. Тогда по Теореме о катете,лежащем против угла в 30, боковые стороны по 3*2=6. Следовательно,длина искомого отрезка по определению(можно увидеть,достроив до параллелограмма) - 6\2=3.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Отрезок не может соединять три точки,лежащих в разных плоскостях просто по его определению(в условии неточность).
Отрезок,соединяющий середину боковой стороны(любой) и основания(они равны как средние линии треугольников с основаниями - боковыми сторонами).
Средняя линия данный отрезок по обратной Теореме Фалеса(отношение на боковых сторонах сторон).
Получаются два прямоугольных треугольника с углами по 30.
Тогда по Теореме о катете,лежащем против угла в 30,
боковые стороны по 3*2=6.
Следовательно,длина искомого отрезка по определению(можно увидеть,достроив до параллелограмма) - 6\2=3.
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.