в треугольниках ABC и А1В1С1 известно, что А=А1 угол В=В1 сторона AB=6 см, я BC = 8 см, А1В1=9 см, А1С1=18 см.Найдите неизвестные стороны данных треугольников
АВСДА1В1С1Д1 - правильная призма. Основаниями правильной четырехугольной призмы являются квадраты. Найдем сторону этого квадтара (ребро при основании) АВ = √18 = 3√2 см ВД1 - диагональ призмы. Найдем ВД - диагональ основания ВД = 3√2 * √2 = 6 см Так как диагональ ВД1 наклонена к плоскости основания по углом 45, то треуг. ВВ1Д1 прямоугольный и равнобедренный. Высота призмы ВВ1 = ВД = 6 см. Площадь боковой поверхности цилиндра, описаного около призмы равна произведению длины окружности в основании на высоту цилиндра. Высота цилиндра равна высоте призмы, т.е. 6 см. Диаметром окружности является диагональ основания призмы ВД. S (боковое) = П * 6 * 6 = 36*П см.
1. Нарисуйте чертеж. 2. Угол между биссектрисой и высотой обозначьте за X. 3. Угол между высотой и ближней к ней стороной Δ - за Y. 4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет = X+Y. 5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ. 6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X. 7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).
Найдем сторону этого квадтара (ребро при основании)
АВ = √18 = 3√2 см
ВД1 - диагональ призмы.
Найдем ВД - диагональ основания
ВД = 3√2 * √2 = 6 см
Так как диагональ ВД1 наклонена к плоскости основания по углом 45, то треуг. ВВ1Д1 прямоугольный и равнобедренный. Высота призмы ВВ1 = ВД = 6 см.
Площадь боковой поверхности цилиндра, описаного около призмы равна произведению длины окружности в основании на высоту цилиндра.
Высота цилиндра равна высоте призмы, т.е. 6 см.
Диаметром окружности является диагональ основания призмы ВД.
S (боковое) = П * 6 * 6 = 36*П см.
2. Угол между биссектрисой и высотой обозначьте за X.
3. Угол между высотой и ближней к ней стороной Δ - за Y.
4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет = X+Y.
5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ.
6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X.
7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).