В треугольниках abc и а1в1с1 углы c и c1 прямые, а отрезки ad и a1d1 биссектрисы. докажите что треугольник abc равен треугольнику a1b1c1 если ad=a1d1 и угол bac равен углу b1a1c1.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1)9 , 16, 12 см
Объяснение:
1)сначала находим катеты (3х и 4х) по теореме пифагора : 16х^2+9х^2= 625; х^2=25; х=5 см. один катет - 15 см , а второй - 20 см;
пусть одна часть гипотенузы равна у, тогда вторая -25-у (высота делит гипотенузу на две части ).
за формулой 15^15= у*25; у=9см, тогда 25-у= 16 см. (это проекции)
высота = 12 см (вымотав в квадрате = 9*16)
2) гипотенуза = корень из 81+ корень из 144 (под одним корнем )= 15 см
одна часть гипотенузы равна х, вторая -15-х. тогда 25=15х-х^2;
ну и находим х(это будет проекция , которая будет 15-х)
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²