В треугольнике A B C : ∠ C = 9 0 ∘ , A 0 , B 0 , C 0 — середины сторон B C , C A , A B соответственно. На отрезках A B 0 и B A 0 во внешнюю сторону построены как на основаниях равносторонние треугольники с вершинами C 1 , C 2 . Найдите угол C 0 C 1 C 2 .
Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника.
Свойство средней линии: средняя линия параллельна третьей стороне треугольника и равна ее половине.
Поэтому:
Каждая сторона треугольника, образованного средними линиями, равна половине соответствующей стороны данного треугольника, т.е. периметр данного треугольника будет в два раза больше периметра треугольника, образованного средними линиями, т.е.
если Р₁ = 12 см, то Р = 12 · 2 = 24 (см).
См. рисунок
ответ: 24 см.
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20