Две хорды, имеющие общую точку, образуют три дуги. Нам известно, что вписанный угол ВАС, опирающийся на дугу ВС, равен 72 градусам 30 минутам, или, так как 1 градус = 60 минут, 72,5 градусам. По свойству вписанного угла, его градусная мера в два раза меньше градусной меры дуги, на которую он опирается. Значит, градусная мера дуги ВС равна 72,5*2=145 градусам.Так как градусная мера всей окружности 360 градусов, сумма двух других дуг будет равна 360-145= 215 градусам. Пусть х - грудусная мера одной части дуги, тогда дуга АВ=19х, дуга АС=24х. Составим уравнение:
Отрезки, соединяющие середины сторон являются средними линиями треугольников и по свойству равны половине основания 2 корень из13:2= корень из13. Так как диагонали прямоугольника равны, то все стороны получившегося параллелограмма равны, значит он ромб. Площадь ромба можно найти как половину произведения диагоналей ромба. Диагонали ромба равны сторонам прямоугольника, поэтому S=1/2*4*6=12
Две хорды, имеющие общую точку, образуют три дуги. Нам известно, что вписанный угол ВАС, опирающийся на дугу ВС, равен 72 градусам 30 минутам, или, так как 1 градус = 60 минут, 72,5 градусам. По свойству вписанного угла, его градусная мера в два раза меньше градусной меры дуги, на которую он опирается. Значит, градусная мера дуги ВС равна 72,5*2=145 градусам.Так как градусная мера всей окружности 360 градусов, сумма двух других дуг будет равна 360-145= 215 градусам. Пусть х - грудусная мера одной части дуги, тогда дуга АВ=19х, дуга АС=24х. Составим уравнение:
19х+24х=215
43х=215
х=5
Дуга АВ=19х=19*5=95 градусов.
Дуга АС=24х=24*5=120 градусов. ;)
найдём диагонали прямоугольника по т. Пифагора
d1=d2=корень из4^2+6^2= корень из16+36= корень из52=2 корень из13
Отрезки, соединяющие середины сторон являются средними линиями треугольников и по свойству равны половине основания 2 корень из13:2= корень из13. Так как диагонали прямоугольника равны, то все стороны получившегося параллелограмма равны, значит он ромб. Площадь ромба можно найти как половину произведения диагоналей ромба. Диагонали ромба равны сторонам прямоугольника, поэтому S=1/2*4*6=12