Так как угол ADB = 90°, а его гипотенуза равна 24 и он является равнобедренным, мы можем найти его катеты из формулы Пифагора 24 = корень из x*x+x*x[ИКС в квадрате + ИКС в квадрате] 24*24[24 в квадрате] = 596 - это сумма квадратных ИКСов под корнем делим 596 на 2[так как икса у нас два] получаем 288 - это ИКС в квадрате, или 12√2 (см) x=AD=BD=12√2 (см) Далее находим DO (O - центр AB). Угол DOC = 60°(это угол между плоскостями треугольников). DO = √BD*DB - OB*OB = √288 - 144 = 12 (см) Далее находим CO CO = √CB*CB - OB*OB = √400 - 144 = √256 = 16 (см) a*a + b*b - 2*a*b*cos a - эта формула звучит как 'a' в квадрате + 'b' в квадрате - удвоенное произведение 'a' и 'b', умноженное на косинус угла между ними (по ней можно найти 3-ю сторону) То есть эта формула из треугольника DCO, подставляем известные данные и находим третью сторону: √16*16 + 12*12 - 2*16*12*cos60° = √256 + 144 - 2*16*12*(1/2) = √256 + 144 - 192 = √208 = 4√13 (см) ОТВЕТ: 4√13 см
думаю решил без ошибок, но вам лучше пересчитать всё, людям свойственны ошибки :)
Дана трапеция ABCD, у которой известны все стороны. Нужно найти высоту, чтобы вычислить площадь.
Проведем отрезок BE к нижнему основанию AD параллельно боковой стороне трапеции CD. Поскольку BE и CD параллельны и проведены между параллельными основаниями трапеции BC и DA, то BCDE - параллелограмм, и его противоположные стороны BE и CD равны. BE=CD.
Рассмотрите треугольник ABE. AE=AD-ED. Основания трапеции BC и AD известны, а в параллелограмме BCDE противолежащие стороны ED и BC равны. ED=BC, значит, AE=AD-BC.
Теперь найдем площадь треугольника ABE по формуле Герона (вложение 2).
24 = корень из x*x+x*x[ИКС в квадрате + ИКС в квадрате]
24*24[24 в квадрате] = 596 - это сумма квадратных ИКСов под корнем
делим 596 на 2[так как икса у нас два] получаем 288 - это ИКС в квадрате, или 12√2 (см)
x=AD=BD=12√2 (см)
Далее находим DO (O - центр AB). Угол DOC = 60°(это угол между плоскостями треугольников).
DO = √BD*DB - OB*OB = √288 - 144 = 12 (см)
Далее находим CO
CO = √CB*CB - OB*OB = √400 - 144 = √256 = 16 (см)
a*a + b*b - 2*a*b*cos a - эта формула звучит как 'a' в квадрате + 'b' в квадрате - удвоенное произведение 'a' и 'b', умноженное на косинус угла между ними (по ней можно найти 3-ю сторону)
То есть эта формула из треугольника DCO, подставляем известные данные и находим третью сторону:
√16*16 + 12*12 - 2*16*12*cos60° = √256 + 144 - 2*16*12*(1/2) = √256 + 144 - 192 = √208 = 4√13 (см)
ОТВЕТ: 4√13 см
думаю решил без ошибок, но вам лучше пересчитать всё, людям свойственны ошибки :)
0,13 м = 1,3 дм
0,73 м = 3,7 дм
Дана трапеция ABCD, у которой известны все стороны. Нужно найти высоту, чтобы вычислить площадь.
Проведем отрезок BE к нижнему основанию AD параллельно боковой стороне трапеции CD. Поскольку BE и CD параллельны и проведены между параллельными основаниями трапеции BC и DA, то BCDE - параллелограмм, и его противоположные стороны BE и CD равны. BE=CD.
Рассмотрите треугольник ABE. AE=AD-ED. Основания трапеции BC и AD известны, а в параллелограмме BCDE противолежащие стороны ED и BC равны. ED=BC, значит, AE=AD-BC.
Теперь найдем площадь треугольника ABE по формуле Герона (вложение 2).
p = 4,5
S = 2,4
Найдем высоту
ВО = 2S / AE
BO = 0,6
Высота треугольник является и высотой трапеции.
Sтрап = (2+6)*0,6 / 2 = 2,4 дм.