Площадь выпуклого четырехугольника, равна половине произведения его диагоналей, умноженному на синус угла между ними. Диагонали прямоугольника равны, поэтому: S прямоугольника =½d²·sin γ. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Образованные половинами диагоналей и каждой из сторон треугольники - равнобедренные. Угол ОАД=ВАД=37° по условию.⇒ угол АДО=углу ОАД - равен 37° Угол ВОА - внешний для треугольника АОД при вершине О и равен сумме двух других, не прилежащих к нему: Угол ВОА=37°+37°=74° S (АВСД=3*3*sin (74°) :2 sin (74°) найдем по таблице синусов. S (АВСД)=9*0,9613:2 ≈ 4,325 см²
Объяснение:
1) a) C1D
b) AB + AD + AA1 = AB + BC + CC1 = AC + CC1 = AC1
c) B1C - AD = B1C - B1C1 = C1C
d) |DC1|² = 32 + 32 = 64
|DC1| = 8
2) а) ВА + ВС + ВВ1 + D1A = BA
б) BB1 + CD + A1D1 + D1B = BB (здесь как не заменяй вектора, получается ВВ)
а) AB + CC1 + A1D1 + C1A = AA (тоже самое)
б) AB + AA1 + AD + C1D = AD
3) а) CC1 = AA1 ÷ 12см
СВ = DA = 8 см
СD = BA = 9 см
б) |DC1|² = DD1 + D1C1 = DD1 + DC = 144 + 81 = 225
|DC1| = 15 см
|DB|² = DA + AB = 81 + 64 = 145
|DB| = корень из 145
|DB1|² = AD + BB1 = AD + DD1 = 144 + 64 = 208
|DB1| = 4 корень 13
Диагонали прямоугольника равны, поэтому:
S прямоугольника =½d²·sin γ.
Диагонали прямоугольника равны и точкой пересечения делятся пополам. Образованные половинами диагоналей и каждой из сторон треугольники - равнобедренные.
Угол ОАД=ВАД=37° по условию.⇒
угол АДО=углу ОАД - равен 37°
Угол ВОА - внешний для треугольника АОД при вершине О и равен сумме двух других, не прилежащих к нему:
Угол ВОА=37°+37°=74°
S (АВСД=3*3*sin (74°) :2
sin (74°) найдем по таблице синусов.
S (АВСД)=9*0,9613:2 ≈ 4,325 см²