В треугольнике ABC угол при вершине B прямой. Известно, что отношение длин медиан, проведенных из вершин A и C, равно √ 13 4 . Найдите отношение длин катетов.
BC = 5; AB = 10 => BC - AB*2, тоесть, катет равен половине гипотенузы, тоесть противоположный катету угол равен 30 градусов.
BC = AD*2 => <A = 30°
<B = 90-30 = 60°.
Высота DC — образовывает 2 прямых угла — <BDC == <ADC = 90°.
<ADC = 90° => <BCD = 90-60 = 30°.
Вывод: <BCD = 30°.
132.
Как мы видим — <DOC & <AOB — вертикальные углы, тоесть друг другу равны.
А по какому-то там признаку равенства прямоугольных треугольников: если катеты двух треугольников, и один острый угол из каждого из них — равен другому, то треугольники равны, что и означает, гипотенузы AO & OD — равны, тоесть: AO == OD = 12.
Вывод: OD = 12.
134.
Так как в треугольниках EFK & DAK — есть 2 равных угла(<FEK; <AKD), и 2 равных стороны(BF; DA), то по признаку равеснства треугольников: ΔEFB == ΔDAK, тоесть — их гипотенузы равны.
И так как накрест лежащие углы также другу равны, то стороны EF & DK — параллельны, по первому признаку параллельности прямых.
Так как <FEK == <AKD, то: <DEK == <EFK, тоесть, накрест лежащие углы друг другу равны, что и означает, что: DE ║FK. И так как в нашем четырёхугольнике — противоположные стороны попарно параллельны, то четырёхугольник — параллелограмм, а в параллелограмме — противоположные стороны равны, тоесть: DE == FK.
Если гипотенуза АВ параллельна оси Ох, то точки А и В - противоположные. A(-x1; y1); B(x1; y1); |AB| = 2x1 Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1 |AC|^2 = (x2+x1)^2 + (y1-y2)^2 |BC|^2 = (x2-x1)^2 + (y1-y2)^2 По теореме Пифагора |AC|^2 + |BC|^2 = |AB|^2 (x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2 x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0 2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0 x2^2 + (y1-y2)^2 - x1^2 = 0 (y1 - y2)^2 = x1^2 - x2^2 Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2 (x1^2 - x2^2)^2 = x1^2 - x2^2 Число равно своему квадрату, значит, оно равно 0 или 1. (x1^2 - x2^2) = (y1 - y2) = 0 или 1 Но 0 разность ординат точек А и С равняться не может, значит, y1 - y2 = 1 Но разность ординат - это и есть высота треугольника.
143.
<D = 90° => <M = 90-60 = 30°.
По теоереме 30-градусного угла прямогуольного треугольника: Катет, противолежащий углу 30-градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: DS = MD/2 => MD = DS*2 = 28*2 = 56.
Вывод: MD = 56.
144.
<BDA = 120° => <ADC = 60° => <DAC = 30° => DC = AD/2 = 12/2 = 6.
<BDA = 120° => <BAD = 180-(<BDA + <ABD) = 30° => <BAD == <ABD = 30°.
<BAD == <ABD => AD == BD = 12.
BD + DC = 12+6 = 18. (Первая картинка)
Вывод: Катет BC = 18.
145.
BC = 5; AB = 10 => BC - AB*2, тоесть, катет равен половине гипотенузы, тоесть противоположный катету угол равен 30 градусов.
BC = AD*2 => <A = 30°
<B = 90-30 = 60°.
Высота DC — образовывает 2 прямых угла — <BDC == <ADC = 90°.
<ADC = 90° => <BCD = 90-60 = 30°.
Вывод: <BCD = 30°.
132.
Как мы видим — <DOC & <AOB — вертикальные углы, тоесть друг другу равны.
А по какому-то там признаку равенства прямоугольных треугольников: если катеты двух треугольников, и один острый угол из каждого из них — равен другому, то треугольники равны, что и означает, гипотенузы AO & OD — равны, тоесть: AO == OD = 12.
Вывод: OD = 12.
134.
Так как в треугольниках EFK & DAK — есть 2 равных угла(<FEK; <AKD), и 2 равных стороны(BF; DA), то по признаку равеснства треугольников: ΔEFB == ΔDAK, тоесть — их гипотенузы равны.
И так как накрест лежащие углы также другу равны, то стороны EF & DK — параллельны, по первому признаку параллельности прямых.
Так как <FEK == <AKD, то: <DEK == <EFK, тоесть, накрест лежащие углы друг другу равны, что и означает, что: DE ║FK. И так как в нашем четырёхугольнике — противоположные стороны попарно параллельны, то четырёхугольник — параллелограмм, а в параллелограмме — противоположные стороны равны, тоесть: DE == FK.
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.