Проведем из вершины отрезки , где точка пересечение с окружностью. Обозначим точку перпендикуляра с . Получим четырехугольник , который вписан в окружность. По теореме Птолемея , так как лежит на центре , то треугольники прямоугольные. . Откуда при подстановке получаем соотношение . Так как Четырехугольник прямоугольник. Заметим что - высота прямоугольного треугольника , тогда . Откуда по Теореме Пифагора , так как является высотой прямоугольного треугольника , то
1) Радиус окружности, описанной около правильного шестиугольника, равен стороне этого шестиугольника. Тогда длина дуги окружности, стягиваемой стороной данного шестиугольника равна L=2πR/6 = 2π9/6=3π. ответ: L=3π. 2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины. причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π ответ: L=28π. 3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°. Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF. Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°. Что и требовалось доказать. Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).
Получим четырехугольник , который вписан в окружность.
По теореме Птолемея , так как лежит на центре , то треугольники прямоугольные.
.
Откуда при подстановке получаем соотношение
.
Так как
Четырехугольник прямоугольник.
Заметим что - высота прямоугольного треугольника
, тогда
.
Откуда по Теореме Пифагора
, так как является высотой прямоугольного треугольника , то
тогда
L=2πR/6 = 2π9/6=3π.
ответ: L=3π.
2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины.
причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π
ответ: L=28π.
3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°.
Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF.
Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°.
Что и требовалось доказать.
Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).