а) Из условия следует, что угол ВМК должен быть равен углу А. В треугольниках МВК и АВС угол В общий. Треугольники подобны по двум углам (первый признак подобия) . Следовательно, КМ: АС=ВК: ВС
б) Площадь треугольника АВС равна сумме площадей четырёхугольника AKMC (S1) и площади треугольника МВК (S2). Значит, площадь треугольника АВС относится к площади треугольника МВК как 9:1. Отношение площадей подобных фигур равно квадрату коэффициента подобия. 9=3^2. Коэффициент подобия равен 3. Тогда АВ: ВМ=3
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В (§ 26,следствие 3). Значит, вершины С и С' совместятся. Треугольник ABC совместился с треугольником А'В'С'.
Следовательно, /\ АВС = /\ А'В'С'.Эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
а) Из условия следует, что угол ВМК должен быть равен углу А. В треугольниках МВК и АВС угол В общий. Треугольники подобны по двум углам (первый признак подобия) . Следовательно, КМ: АС=ВК: ВС
б) Площадь треугольника АВС равна сумме площадей четырёхугольника AKMC (S1) и площади треугольника МВК (S2). Значит, площадь треугольника АВС относится к площади треугольника МВК как 9:1. Отношение площадей подобных фигур равно квадрату коэффициента подобия. 9=3^2. Коэффициент подобия равен 3. Тогда АВ: ВМ=3
Объяснение:
Снизу
Объяснение:
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В (§ 26,следствие 3). Значит, вершины С и С' совместятся. Треугольник ABC совместился с треугольником А'В'С'.
Следовательно, /\ АВС = /\ А'В'С'.Эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).