∠А=180°-(90°+60°)=180°-150°=30°-по теореме о сумме углов в треугольнике.
В условии сказано что сумма гипотенузы и меньшего катета равна 30 см. Чтобы понять какой катет меньший, для это нужно посмотреть на углы, которые находятся напротив катетов. Напротив ∠А находится самый маленький катет, т.к ∠А самый маленький в этом треугольнике.
Значит, СВ+АВ=30 см.
Напротив угла равного 30° лежит катет СВ⇒ он равен половине гипотенузы АВ.
10 см.
Объяснение:
✓РЕШЕНО МУДROST✓
Если ∠С = 90°, а ∠В=60°, то
∠А=180°-(90°+60°)=180°-150°=30°-по теореме о сумме углов в треугольнике.
В условии сказано что сумма гипотенузы и меньшего катета равна 30 см. Чтобы понять какой катет меньший, для это нужно посмотреть на углы, которые находятся напротив катетов. Напротив ∠А находится самый маленький катет, т.к ∠А самый маленький в этом треугольнике.
Значит, СВ+АВ=30 см.
Напротив угла равного 30° лежит катет СВ⇒ он равен половине гипотенузы АВ.
Пусть х см - гипотенуза АВ, то
СВ=
Составим и решим уравнение:
x+0,5х=30
1,5х=30
х=30:1,5
х=20
Итак: гипотенуза АВ=20 см, тогда
СВ= см.
✓РЕШЕНО МУДROST✓