В треугольнике KLM известно, что ∠KML = 90o и на сторонах KL и ML взяты соответственно точки N и T так, что ∠TKL =210 и ∠NML =420 Найдите величину угла ∠TNL, если известно, что ∠KLM = 240.
Пусть BE - высота, проведенная к стороне AC, а точка D - равноудалена от концов AC, значит AD=DC. Рассмотрим тр-ки ADE и CDE. Они прямоугольные и у них один из катетов общий (DE), а гипотенузы равны AD=DC. Значит эти тр-ки равны: "если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны."
Из их равенства следует, что AE=EC, а значит тр-к ABC равнобедренный по признаку: "Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным"
Объяснение:
В прямоугольном треугольнике АВС угол С прямой,
катеты равны 15 см и 20 см.
Найдите косинус , синус и тангенс угла В.
Решение.
Косинус (cosB)- отношение прилежащего катета (ВС=20 см) к гипотенузе.
Находим гипотенузу по т. Пифагора
АВ²=АС²+ВС² = 15²+20²=225+400=625;
АВ = √625=25 см. Тогда
cosB = 20/25 = 4/5 = 0.8.
Cинус угла В (sinB) равен отношению противолежащего катета (AC=15 см) к гипотенузе (АВ=25 см)
sinB = 15/25 = 3/5 = 0,6.
Тангенс угла В (tgB) равен отношению противолежащего катета (AC=15 см) к прилежащему (ВС=20 см)
tgB =15/20 = 3/4 = 0.75.
Объяснение:
Пусть BE - высота, проведенная к стороне AC, а точка D - равноудалена от концов AC, значит AD=DC. Рассмотрим тр-ки ADE и CDE. Они прямоугольные и у них один из катетов общий (DE), а гипотенузы равны AD=DC. Значит эти тр-ки равны: "если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны."
Из их равенства следует, что AE=EC, а значит тр-к ABC равнобедренный по признаку: "Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным"