В треугольнике KLM отмечены точки P и Q – середины LN и LM соответственно, при чем LP = 7 см, QM = 5 см, PQ = 7,5 см. Найдите периметр треугольника KLM.
1) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1 Пусть B₁C = x, тогда AB₁ = 2x x + 2x = 9 3x = 9 x = 3 B₁C = 3, AB₁ = 6 AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис. ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3 2) CO ·OD = AO · OB CO = OD = x x² = 4·25 x² = 100 x = 10 CD = 20 3) ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒ DK / KB = FD / BM = 1/2
тогда площадь диагонального сечения равна 12√2х²=48√2/см²/
Верный ответ а) 48√2 см²
Приношу извинения. что не могу использовать приложение/не работает/, чтобы изобразить параллелепипед, но это совсем легко, в любом учебнике он изображен стандартно.
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1
Пусть B₁C = x, тогда AB₁ = 2x
x + 2x = 9
3x = 9
x = 3
B₁C = 3, AB₁ = 6
AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис.
ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3
2)
CO ·OD = AO · OB
CO = OD = x
x² = 4·25
x² = 100
x = 10
CD = 20
3)
ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒
DK / KB = FD / BM = 1/2
пусть х - коэффициент пропорциональности.
Из условия ясно, что АВ=ВС=СD=AD=А₁В₁=В₁С₁=С₁D₁=A₁D₁=3x
CC₁=AA₁=4x; АС=√(АВ²+ВС²)=√(9х²+9х²)=3√2*х
A₁B=√(AA₁²+AB²)=√(16x²+9x²)=5x
Диагональное сечение прямоугольник А₁С₁СА, его площадь равна
АС*СС₁=3√2х*4х=12√2х²
Найдем х
(ВС+СС₁+D₁C₁+D₁A₁+A₁B)=3x+4x+3x+3x+5x=36⇒x=36/18=2
тогда площадь диагонального сечения равна 12√2х²=48√2/см²/
Верный ответ а) 48√2 см²
Приношу извинения. что не могу использовать приложение/не работает/, чтобы изобразить параллелепипед, но это совсем легко, в любом учебнике он изображен стандартно.