Решение: 1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500 25x^2=2500 x^2=100 x=-+10
-10 мы значение не берем по смыслу. Значит, x=10. Тогда 3х = 3*10 = 30(мм) 4х = 4*10 = 40(мм). 2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок: ac=a^2\c a - катет с - гипотенуза a с индексом с - отрезок. ac=900\50=18 А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм). ответ: 18 и 32 мм
1.)
Используем теорему синусов для определения длины АС.
АС / Sinα = BC / Sinβ.
AC = BC * Sinα / Sinβ = a * Sinα / Sinβ см.
Определим величину угла АСВ.
Угол АСВ = (180 – (α + β)).
Вычислим площадь треугольника АВС.
Sавс = АС * ВС * SinACB / 2 = (a * Sinα / Sinβ) * a * Sin(α + β) / 2 = a2 * Sinα * Sin(α + β) / 2 * Sinβ см2.
Радиус описанной окружности будет равен:
R = BC / 2 * SinBAC = a / 2 * Sinα см.
ответ:Площадь треугольника равна a2 * Sinα * Sin(α + β) / 2 * Sinβ см2, радиус описанной окружности равен a / 2 * Sinα см.
2.)У параллелограмма противоположные стороны равны, тогда АВ = СД 4 см, ВС = АД = 5 * √2 см.
Из треугольника АВД, по теореме косинусов, определим длину диагонали ВД.
ВД2 = АВ2 + АД2 – 2 * АВ * АД * Cos45 = 16 + 50 – 2 * 4 * 5 * √2 * √2 / 2 = 66 – 40 = 26.
ВД = √26 см.
Сумма соседних углов параллелограмма равна 1800, тогда угол АВС = 180 – 45 = 1350.
Из треугольника АВС, по теореме косинусов, определим длину диагонали АС.
АС2 = АВ2 + ВС2 – 2 * АВ * ВС * Cos135 = 16 + 50 – 2 * 4 * 5 * √2 * (-√2 / 2) = 66 + 40 = 106.
AC = √106 cм.
Определим площадь параллелограмма.
Sавсд = АВ * АД * Sin45 = 4 * 5 * √2 * √2 / 2 = 20 см2.
ответ: Площадь параллелограмма равна 20 см2, диагонали равны √26 см, √106 см.
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500
25x^2=2500
x^2=100
x=-+10
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
ac=a^2\c
a - катет
с - гипотенуза
a с индексом с - отрезок.
ac=900\50=18
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
ответ: 18 и 32 мм