В треугольнике mnk на стороне MN дано. А на стороне MK. B Начертите прямую AB Выпишите внутренние накрест лежащие и внутренние односторонние соответственные внешние накрест лежащие и внешние односторонние углы образованные в результате пересечения прямых MN и MK секущей AB
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Любой прямоугольный треугольник опирается на диаметр описанной окружности, т.е. его гипотенуза = диаметру окружности.
Следовательно, медиана, которая делит гипотенузу пополам, будет падать на середину диаметра - т.е. центр окружности. Половины диаметра - это радиусы окружности.
Т.к. вершина прямого угла треугольника лежит на окружности, а медиана падает в её центр, значит медиана - это радиус окружности.
Радиус одинаков по всей окружности.
А если медиана - это радиус, и половины гипотенузы - тоже радиусы, делаем вывод, что медиана равна половине гипотенузы.
Т.е. гипотенуза в целом будет равна 2-м медианам: 8+8=16.