Равнобедренный треугольник ABC
AB=BC=6см (т.к. треугольник равнобедренный)
Угол BAC=углу BCA=45 градусов (углы при основании равны у равнобедренного треугольника)
Получается 2 угла по 45 в сумме дают 90, значит третий угол=180-90=90 градусов.
Выходит, что треугольник равнобедренный и прямоугольный.
AB=BC катеты
AC=гипотенуза
По теореме Пифагора найдем AC
AC^2=AB^2+BC^2
AC^2=36+36
AC^2=72
AC=6√2
Высота равнобедренного треугольника =\sqrt{a^{2}- \frac{b^{2}}{4} }a2−4b2
, где a=AB=BC=6
b=AC=6√2
h=\sqrt{6^{2}- \frac{(6 \sqrt{2})^{2} }{4} } = \sqrt{36- \frac{36*2}{4} } = \sqrt{36-18} = \sqrt{18}=3 \sqrt{2}62−4(62)2=36−436∗2=36−18=18=32
Площадь треугольника=1/2*основание*высоту=\frac{1}{2}*6 \sqrt{2} *3 \sqrt{2} =1821∗62∗32=18 см²
Объяснение:
1. ∠С отмечен квадратиком, это означает, что он прямой, т.е ∠С =90°. Значит, ΔАВС и ∠ОВС - прямоугольные
(Гипотенуза - это сторона Δ-ка, лежащая против прямого угла)
2. Теорема, необходимая для решения задач с прямоугольным треугольником:
Квадрат гипотенузы равен сумме квадратов катетов, т.е.
АВ² = ВС² + АС² ( из ΔАВС) и
ОВ² = ВС² + ОС² (из ΔОВС)
3. Решение
а) Рассмотрим ΔОВС.
ОВ² = ВС² + ОС² или
(√6)² = ВС² + 1², откуда
ВС² = 6-1
ВС² = 5
б) теперь обратимся к ΔАВС.
АВ² = ВС² + АС² или
3² = 5 +АС², откуда
АС² = 9 -5 = 4
АС = √4 = 2
Но АС = АО + ОС или
2 = АО + 1
АО = х = 2 -1
АО = х = 1
№2.
1) ΔАВС - прямоугольный, т.к. ∠А = 90° (прямой)
ВС² = АВ² + АС² (квадрат гипотенузы = сумме квадратов катетов)
ВС² = 1 + 1
ВС² = 2
2) Рассмотрим ΔВКС, он тоже прямоугольный, т.к. ∠КВС = 90° (по условию, рис.)
КС² = ВС² +ВК² или
2² = 2 + х²
х ² = 4 - 2
х² = 2
х = √2
Равнобедренный треугольник ABC
AB=BC=6см (т.к. треугольник равнобедренный)
Угол BAC=углу BCA=45 градусов (углы при основании равны у равнобедренного треугольника)
Получается 2 угла по 45 в сумме дают 90, значит третий угол=180-90=90 градусов.
Выходит, что треугольник равнобедренный и прямоугольный.
AB=BC катеты
AC=гипотенуза
По теореме Пифагора найдем AC
AC^2=AB^2+BC^2
AC^2=36+36
AC^2=72
AC=6√2
Высота равнобедренного треугольника =\sqrt{a^{2}- \frac{b^{2}}{4} }a2−4b2
, где a=AB=BC=6
b=AC=6√2
h=\sqrt{6^{2}- \frac{(6 \sqrt{2})^{2} }{4} } = \sqrt{36- \frac{36*2}{4} } = \sqrt{36-18} = \sqrt{18}=3 \sqrt{2}62−4(62)2=36−436∗2=36−18=18=32
Площадь треугольника=1/2*основание*высоту=\frac{1}{2}*6 \sqrt{2} *3 \sqrt{2} =1821∗62∗32=18 см²
Объяснение:
1. ∠С отмечен квадратиком, это означает, что он прямой, т.е ∠С =90°. Значит, ΔАВС и ∠ОВС - прямоугольные
(Гипотенуза - это сторона Δ-ка, лежащая против прямого угла)
2. Теорема, необходимая для решения задач с прямоугольным треугольником:
Квадрат гипотенузы равен сумме квадратов катетов, т.е.
АВ² = ВС² + АС² ( из ΔАВС) и
ОВ² = ВС² + ОС² (из ΔОВС)
3. Решение
а) Рассмотрим ΔОВС.
ОВ² = ВС² + ОС² или
(√6)² = ВС² + 1², откуда
ВС² = 6-1
ВС² = 5
б) теперь обратимся к ΔАВС.
АВ² = ВС² + АС² или
3² = 5 +АС², откуда
АС² = 9 -5 = 4
АС = √4 = 2
Но АС = АО + ОС или
2 = АО + 1
АО = х = 2 -1
АО = х = 1
№2.
1) ΔАВС - прямоугольный, т.к. ∠А = 90° (прямой)
ВС² = АВ² + АС² (квадрат гипотенузы = сумме квадратов катетов)
ВС² = 1 + 1
ВС² = 2
2) Рассмотрим ΔВКС, он тоже прямоугольный, т.к. ∠КВС = 90° (по условию, рис.)
КС² = ВС² +ВК² или
2² = 2 + х²
х ² = 4 - 2
х² = 2
х = √2