Свойства равнобокой трапеции: Теорема 10. Углы, прилежащие к каждому из оснований равнобокой трапеции, равны. Доказательство. Докажем, например, равенство углов А и D при большем основании AD равнобокой трапеции АВСD. Для этой цели проведем через точку С прямую параллельную боковой стороне АВ. Она пересечет большое основание в точке М. Четырехугольник АВСМ являеся параллелограммом, т.к. по построению имеет две пары параллельных сторон. Следовательно, отрезок СМ секущей прямой, заключенный внутри трапеции равен её боковой стороне: СМ=АВ. Отсюда ясно, что СМ=СD, треугольник СМD - равнобедренный, РСМD=РСDM, и, значит, РА=РD. Углы, прилежащие к меньшему основанию, также равны, т.к. являются для найденных внутренними односторонним и имеют в сумме два прямых. Теорема 11. Диагонали равнобокой трапеции равны. Доказательство. Рассмотрим треугольники АВD и ACD. Она равны по двум сторонам и углу между ними (АВ=СD, AD - общая, углы А и D равны по теореме 10). Поэтому АС=BD.
Ромб - это частный случай параллелограмма, у которого все стороны равны. Рассмотрим ромб ABCD. Угол А=углу C = 40 градусв. Сумма углов в четырёхугольнике равна 360 градусов. Поэтому оставшиеся углы В и D ...В=D=[360-(2*40)]/2=140 градусов. Учитывая, что перед нами ромб, у него все стороны раны, имеем дело с двумя равнобедренными треугольниками с общей стороной BD. Раз треугольники равнобедренны, значит их углы при основании равны. Стало быть меньшая диагональ BD является биссектрисой углов B и D. Следовательно угол между меньшей диагональю ромба BD и стороной равен 70 градусов.
Теорема 10. Углы, прилежащие к каждому из оснований равнобокой трапеции, равны.
Доказательство. Докажем, например, равенство углов А и D при большем основании AD равнобокой трапеции АВСD. Для этой цели проведем через точку С прямую параллельную боковой стороне АВ. Она пересечет большое основание в точке М. Четырехугольник АВСМ являеся параллелограммом, т.к. по построению имеет две пары параллельных сторон. Следовательно, отрезок СМ секущей прямой, заключенный внутри трапеции равен её боковой стороне: СМ=АВ. Отсюда ясно, что СМ=СD, треугольник СМD - равнобедренный, РСМD=РСDM, и, значит, РА=РD. Углы, прилежащие к меньшему основанию, также равны, т.к. являются для найденных внутренними односторонним и имеют в сумме два прямых.
Теорема 11. Диагонали равнобокой трапеции равны.
Доказательство. Рассмотрим треугольники АВD и ACD. Она равны по двум сторонам и углу между ними (АВ=СD, AD - общая, углы А и D равны по теореме 10). Поэтому АС=BD.
Угол А=углу C = 40 градусв. Сумма углов в четырёхугольнике равна 360 градусов. Поэтому оставшиеся углы В и D ...В=D=[360-(2*40)]/2=140 градусов. Учитывая, что перед нами ромб, у него все стороны раны, имеем дело с двумя равнобедренными треугольниками с общей стороной BD. Раз треугольники равнобедренны, значит их углы при основании равны. Стало быть меньшая диагональ BD является биссектрисой углов B и D. Следовательно угол между меньшей диагональю ромба BD и стороной равен 70 градусов.