Решение Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, < АВС = 180° - 30° = 150° Пусть АВ = 4см ВС = 4√3 см Найдем по теореме косинусов диагональ основания АС. АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС² = 16 + 48 + [32√3*(√3)]/2=112 АС = √112 = 4√7 Высота призмы СС₁ = АС / ctg(60°)=(4√7) / 1/√3 CC₁ = 4√21 Площадь боковой поверхности данной призмы S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см² ответ: 32√21*(1+√3) см²
Треугольник с прямым углом - это прямоугольный треугольник.
Так как меньшие стороны "прилегают" к прямому углу, то эти стороны - катеты.
Так как катеты имеют длины 6 см и 8 см, то также такой треугольник - египетский (треугольник с соотношением сторон, равным 3:4:5). Следовательно, гипотенуза равна 10 см (можно также проверить через теорему Пифагора).
Высота, проведённая к большей стороне - высота, проведённая к гипотенузе (так как гипотенуза - самая большая сторона в прямоугольном треугольнике).
Высота, проведённая к гипотенузе равна произведению катетов, делённому на гипотенузу.
Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²
Треугольник с прямым углом - это прямоугольный треугольник.
Так как меньшие стороны "прилегают" к прямому углу, то эти стороны - катеты.
Так как катеты имеют длины 6 см и 8 см, то также такой треугольник - египетский (треугольник с соотношением сторон, равным 3:4:5). Следовательно, гипотенуза равна 10 см (можно также проверить через теорему Пифагора).
Высота, проведённая к большей стороне - высота, проведённая к гипотенузе (так как гипотенуза - самая большая сторона в прямоугольном треугольнике).
Высота, проведённая к гипотенузе равна произведению катетов, делённому на гипотенузу.
То есть -
h = 4,8 см.
ответ: 4,8 см.