Это один вопрос: признаки равенства треугольников. 1. Два треугольника называются равными ( Δ ABC = Δ A1B1C1), если у них соответствующие стороны равны (AB = A1B1; AC = A1C1; BC = B1C1) и соответствующие углы равны <A = <A1; <B = <B1; <C = <C1 (< - угол) 2. Равные треугольники совпадают при наложении
Признаки равенства: Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
А) Расстояние от точки пересечения диагоналей квадрата к боковому ребру SB = 2 см - это нормаль к ребру в точку К.Если провести сечение пирамиды по этому отрезку и диагонали основания АС, то получим треугольник: основание АС = 4√2, высота ОК = 2 см. Угол при вершине К - это искомый угол между гранями. Он равен двум углам ОКС. Угол ОКС = arc tg(2√2 / 2) = arc tg √2 = 0.955317 радиан = 54.73561°.
б) Найдём отрезок КВ = √((2√2)²-2²) = √(8-4) = √4 = 2 см. Поэтому угол SBO = 45°. Тогда высота пирамиды SO = OB = 2√2. Апофема SP = √(8+4) = √12 = 2√3. Угол при вершине CSB = 2*arc tg(2/2√3) = 2*30 = 60°.
1. Два треугольника называются равными ( Δ ABC = Δ A1B1C1), если у них соответствующие стороны равны
(AB = A1B1; AC = A1C1; BC = B1C1)
и соответствующие углы равны
<A = <A1; <B = <B1; <C = <C1
(< - угол)
2. Равные треугольники совпадают при наложении
Признаки равенства:
Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
основание АС = 4√2, высота ОК = 2 см.
Угол при вершине К - это искомый угол между гранями.
Он равен двум углам ОКС.
Угол ОКС = arc tg(2√2 / 2) = arc tg √2 = 0.955317 радиан = 54.73561°.
б) Найдём отрезок КВ = √((2√2)²-2²) = √(8-4) = √4 = 2 см.
Поэтому угол SBO = 45°.
Тогда высота пирамиды SO = OB = 2√2.
Апофема SP = √(8+4) = √12 = 2√3.
Угол при вершине CSB = 2*arc tg(2/2√3) = 2*30 = 60°.